-
Notifications
You must be signed in to change notification settings - Fork 5.7k
feature/beam search op #5052
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Superjomn
merged 14 commits into
PaddlePaddle:develop
from
Superjomn:feature/beam_search_op
Nov 15, 2017
Merged
feature/beam search op #5052
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
ea79173
add beam_search_op
Superjomn 4f32fa1
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into feature…
Superjomn cd4b00d
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into feature…
Superjomn e17aa13
finish debuging
Superjomn 54f42bc
clean code
Superjomn daa0882
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into feature…
Superjomn 1059b93
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into feature…
Superjomn bfb14fa
add end_id support
Superjomn e859544
add TODO comment
Superjomn d81ef88
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into feature…
Superjomn 13684ea
fix python test
Superjomn 411cb8f
fix unittest
QiJune 11c33f2
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Superjomn 390d40e
update comment
Superjomn File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/beam_search_op.h" | ||
|
||
#include <map> | ||
#include "paddle/framework/lod_tensor.h" | ||
#include "paddle/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
void BeamSearch::operator()(const framework::LoDTensor &pre_ids, | ||
framework::LoDTensor *selected_ids, | ||
framework::LoDTensor *selected_scores) { | ||
auto items = SelectTopBeamSizeItems(); | ||
auto selected_items = ToMap(items); | ||
PruneEndidCandidates(pre_ids, &selected_items); | ||
// calculate the output tensor's height | ||
size_t num_instances = std::accumulate( | ||
std::begin(items), std::end(items), 0, | ||
[](size_t a, std::vector<Item> &b) { return a + b.size(); }); | ||
// the output tensor shape should be [num_instances, 1] | ||
auto dims = framework::make_ddim( | ||
std::vector<int64_t>({static_cast<int>(num_instances), 1})); | ||
selected_ids->Resize(dims); | ||
selected_scores->Resize(dims); | ||
|
||
std::map<size_t /*offset*/, std::vector<Item>> hash; | ||
framework::LoD new_lod; | ||
auto *ids_data = selected_ids->mutable_data<int>(platform::CPUPlace()); | ||
auto *scores_data = | ||
selected_scores->mutable_data<float>(platform::CPUPlace()); | ||
|
||
// fill in data | ||
std::vector<size_t> low_level; | ||
size_t low_offset = 0; | ||
for (auto &items : selected_items) { | ||
low_level.push_back(low_offset); | ||
for (auto &item : items) { | ||
ids_data[low_offset] = item.id; | ||
scores_data[low_offset] = item.score; | ||
low_offset++; | ||
} | ||
} | ||
// fill lod | ||
auto abs_lod = framework::ToAbsOffset(ids_->lod()); | ||
auto &high_level = abs_lod[lod_level_]; | ||
framework::LoD lod(2); | ||
lod[0].assign(high_level.begin(), high_level.end()); | ||
lod[1].assign(low_level.begin(), low_level.end()); | ||
selected_ids->set_lod(lod); | ||
selected_scores->set_lod(lod); | ||
} | ||
|
||
void BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids, | ||
std::vector<std::vector<Item>> *items) { | ||
auto *pre_ids_data = pre_ids.data<int>(); | ||
|
||
for (size_t offset = 0; offset < items->size(); offset++) { | ||
auto prefix_id = pre_ids_data[offset]; | ||
if (prefix_id == end_id_) { | ||
items->at(offset).clear(); | ||
} | ||
} | ||
} | ||
|
||
std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap( | ||
const std::vector<std::vector<Item>> &items) { | ||
std::vector<std::vector<Item>> result; | ||
for (auto &entries : items) { | ||
for (const auto &item : entries) { | ||
if (item.offset >= result.size()) { | ||
result.resize(item.offset + 1); | ||
} | ||
result[item.offset].push_back(item); | ||
} | ||
} | ||
return result; | ||
} | ||
|
||
std::vector<std::vector<BeamSearch::Item>> | ||
BeamSearch::SelectTopBeamSizeItems() { | ||
std::vector<std::vector<Item>> result; | ||
std::vector<Item> items; | ||
// for each source sentence, select the top beam_size items across all | ||
// candidate sets. | ||
while (NextItemSet(&items)) { | ||
std::nth_element(std::begin(items), std::begin(items) + beam_size_, | ||
std::end(items), [](const Item &a, const Item &b) { | ||
// TODO(superjom) make score's comparation customizable. | ||
// partial sort in descending order | ||
return a.score > b.score; | ||
}); | ||
// prune the top beam_size items. | ||
if (items.size() > beam_size_) { | ||
items.resize(beam_size_); | ||
} | ||
result.emplace_back(items); | ||
} | ||
return result; | ||
} | ||
|
||
// the candidates of a source | ||
bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) { | ||
if (sent_offset_ >= ids_->NumElements(lod_level_)) { | ||
return false; | ||
} | ||
// find the current candidates | ||
auto ids = *ids_; | ||
auto scores = *scores_; | ||
|
||
auto source_abs_two_level_lod = framework::SliceInLevel( | ||
ids.lod(), lod_level_, sent_offset_, sent_offset_ + 1); | ||
source_abs_two_level_lod = framework::ToAbsOffset(source_abs_two_level_lod); | ||
auto abs_lod = framework::ToAbsOffset(ids.lod()); | ||
PADDLE_ENFORCE_GE(source_abs_two_level_lod.size(), 2UL); | ||
|
||
auto *ids_data = ids.data<int>(); | ||
auto *scores_data = scores.data<float>(); | ||
|
||
size_t instance_dim = 1; | ||
for (int i = 1; i < ids.dims().size(); i++) { | ||
instance_dim *= ids.dims()[i]; | ||
} | ||
|
||
items->clear(); | ||
items->reserve(framework::product(ids.dims())); | ||
for (size_t offset = abs_lod[lod_level_][sent_offset_]; | ||
offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) { | ||
for (int d = 0; d < instance_dim; d++) { | ||
const size_t dim_offset = offset * instance_dim + d; | ||
items->emplace_back(offset, ids_data[dim_offset], | ||
scores_data[dim_offset]); | ||
} | ||
} | ||
|
||
sent_offset_++; | ||
return true; | ||
} | ||
|
||
class BeamSearchProtoAndCheckerMaker | ||
: public framework::OpProtoAndCheckerMaker { | ||
public: | ||
BeamSearchProtoAndCheckerMaker(framework::OpProto *proto, | ||
framework::OpAttrChecker *op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
// inputs and outputs stored in proto | ||
AddInput("pre_ids", "ids in previous step"); | ||
AddInput("ids", "a LoDTensor of shape of [None,k]"); | ||
AddInput("scores", | ||
"a LoDTensor that has the same shape and LoD with `ids`"); | ||
AddOutput("selected_ids", | ||
"a LoDTensor that stores the IDs selected by beam search"); | ||
AddOutput( | ||
"selected_scores", | ||
"a LoDTensor that has the same shape and LoD with `selected_ids`"); | ||
|
||
// Attributes stored in AttributeMap | ||
AddAttr<int>("level", "the level of LoDTensor"); | ||
AddAttr<int>("beam_size", "beam size for beam search"); | ||
AddAttr<int>("end_id", | ||
"the token id which indicates the end of a sequence"); | ||
|
||
AddComment( | ||
"This is a beam search operator that help to generate sequences."); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OP_WITHOUT_GRADIENT(beam_search, paddle::operators::BeamSearchOp, | ||
paddle::operators::BeamSearchProtoAndCheckerMaker); |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The indentation of the license has some problem. It should be like that in the
accuracy_op.h
. (Confirmed this with qingqing.)