Skip to content

Implementing the Decayed Adagrad optimizer operator #4645

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 12, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions paddle/operators/decayed_adagrad_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/decayed_adagrad_op.h"

namespace paddle {
namespace operators {

class DecayedAdagradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment"),
"Input(Moment) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("LearningRate"),
"Input(LearningRate) of DecayedAdagradOp should not be null.");

PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of DecayedAdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
"Output(MomentOut) of DecayedAdagradOp should not be null.");

auto lr_dims = ctx->GetInputDim("LearningRate");
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
"LearningRate should have one element");
auto param_dims = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Grad"),
"Param and Grad input of DecayedAdagradOp should have "
"the same dimension.");
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Moment"),
"Param and Moment input of DecayedAdagradOp should have "
"the same dimension.");

ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("MomentOut", param_dims);
}
};

class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
DecayedAdagradOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("Moment", "(Tensor) Second moment");
AddInput("LearningRate", "(Tensor) Learning rate");

AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("MomentOut", "(Tensor) Output second moment");

AddAttr<float>("decay",
"(float, default 0.95) "
"Discounting factor for coming gradient")
.SetDefault(0.95);
AddAttr<float>("epsilon",
"(float, default 1.0e-6) "
"Constant for numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(

Decayed Adagrad

moment_out = decay * moment + (1 - decay) * grad * grad
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

does there have an article about this optimize algorithm?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I cannot find published article about it.
Just following the formula in http://doc.paddlepaddle.org/develop/doc/api/v2/config/optimizer.html#decayedadagrad

param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)

)DOC");
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp,
ops::DecayedAdagradOpMaker);
REGISTER_OP_CPU_KERNEL(
decayed_adagrad,
ops::DecayedAdagradOpKernel<paddle::platform::CPUPlace, float>);
21 changes: 21 additions & 0 deletions paddle/operators/decayed_adagrad_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/decayed_adagrad_op.h"

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
decayed_adagrad,
ops::DecayedAdagradOpKernel<paddle::platform::GPUPlace, float>);
56 changes: 56 additions & 0 deletions paddle/operators/decayed_adagrad_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename Place, typename T>
class DecayedAdagradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");

param_out_tensor->mutable_data<T>(ctx.GetPlace());
moment_out_tensor->mutable_data<T>(ctx.GetPlace());

float decay = ctx.Attr<float>("decay");
float epsilon = ctx.Attr<float>("epsilon");

auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
auto moment = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment"));
auto lr = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("LearningRate"));

auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
auto place = ctx.GetEigenDevice<Place>();

moment_out.device(place) = decay * moment + (1 - decay) * grad * grad;
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
param_out.device(place) =
param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
}
};

} // namespace operators
} // namespace paddle
71 changes: 71 additions & 0 deletions python/paddle/v2/framework/tests/test_decayed_adagrad_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import unittest
import numpy as np
from op_test import OpTest


class TestDecayedAdagradOp1(OpTest):
''' Test DecayedAdagrad operator with explicit attributes
'''

def setUp(self):
self.op_type = "decayed_adagrad"

param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
decay = 0.80
epsilon = 1e-8

self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}

self.attrs = {'decay': decay, 'epsilon': epsilon}

moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

def test_check_output(self):
self.check_output()


class TestDecayedAdagradOp2(OpTest):
''' Test DecayedAdagrad operator with default attributes
'''

def setUp(self):
self.op_type = "decayed_adagrad"

param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
decay = 0.95
epsilon = 1e-6

self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}

self.attrs = {'decay': decay, 'epsilon': epsilon}

moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

def test_check_output(self):
self.check_output()


if __name__ == "__main__":
unittest.main()