Skip to content

[Phi] Move part sum op kernel #40873

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 21 additions & 5 deletions paddle/fluid/framework/infershape_utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

#include <algorithm>
#include <string>

#include "paddle/fluid/framework/convert_utils.h"
Expand Down Expand Up @@ -69,27 +70,42 @@ class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {

bool IsDenseTensorInput(const std::string& name) const override {
auto var_types = ctx_.GetInputsVarType(name);
return var_types[0] == proto::VarType::LOD_TENSOR;
return std::all_of(var_types.begin(), var_types.end(),
[](const proto::VarType::Type& type) {
return type == proto::VarType::LOD_TENSOR;
});
}

bool IsSelectedRowsInput(const std::string& name) const override {
auto var_types = ctx_.GetInputsVarType(name);
return var_types[0] == proto::VarType::SELECTED_ROWS;
return std::all_of(var_types.begin(), var_types.end(),
[](const proto::VarType::Type& type) {
return type == proto::VarType::SELECTED_ROWS;
});
}

bool IsDenseTensorVectorInput(const std::string& name) const override {
auto var_types = ctx_.GetInputsVarType(name);
return var_types[0] == proto::VarType::LOD_TENSOR_ARRAY;
return std::all_of(var_types.begin(), var_types.end(),
[](const proto::VarType::Type& type) {
return type == proto::VarType::LOD_TENSOR_ARRAY;
});
}

bool IsDenseTensorOutput(const std::string& name) const override {
auto var_types = ctx_.GetOutputsVarType(name);
return var_types[0] == proto::VarType::LOD_TENSOR;
return std::all_of(var_types.begin(), var_types.end(),
[](const proto::VarType::Type& type) {
return type == proto::VarType::LOD_TENSOR;
});
}

bool IsSelectedRowsOutput(const std::string& name) const override {
auto var_types = ctx_.GetOutputsVarType(name);
return var_types[0] == proto::VarType::SELECTED_ROWS;
return std::all_of(var_types.begin(), var_types.end(),
[](const proto::VarType::Type& type) {
return type == proto::VarType::SELECTED_ROWS;
});
}

bool IsForInferShape() const override { return true; }
Expand Down
25 changes: 20 additions & 5 deletions paddle/fluid/framework/operator.h
Original file line number Diff line number Diff line change
Expand Up @@ -476,23 +476,38 @@ class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
}

bool IsDenseTensorInput(const std::string& name) const override {
return ctx_.InputVar(name)->IsType<framework::LoDTensor>();
auto vars = ctx_.MultiInputVar(name);
return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
return var->IsType<phi::DenseTensor>();
});
}

bool IsSelectedRowsInput(const std::string& name) const override {
return ctx_.InputVar(name)->IsType<phi::SelectedRows>();
auto vars = ctx_.MultiInputVar(name);
return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
return var->IsType<phi::SelectedRows>();
});
}

bool IsDenseTensorVectorInput(const std::string& name) const override {
return ctx_.InputVar(name)->IsType<framework::LoDTensorArray>();
auto vars = ctx_.MultiInputVar(name);
return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
return var->IsType<framework::LoDTensorArray>();
});
}

bool IsDenseTensorOutput(const std::string& name) const override {
return ctx_.OutputVar(name)->IsType<framework::LoDTensor>();
auto vars = ctx_.MultiOutputVar(name);
return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
return var->IsType<phi::DenseTensor>();
});
}

bool IsSelectedRowsOutput(const std::string& name) const override {
return ctx_.OutputVar(name)->IsType<phi::SelectedRows>();
auto vars = ctx_.MultiOutputVar(name);
return std::all_of(vars.begin(), vars.end(), [](const Variable* var) {
return var->IsType<phi::SelectedRows>();
});
}

bool IsForInferShape() const override { return false; }
Expand Down
2 changes: 0 additions & 2 deletions paddle/phi/core/compat/op_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -66,9 +66,7 @@ const std::unordered_set<std::string> deprecated_op_names({"diag",
"expand_as",
"expand_grad",
"expand_as_grad",
"sum",
"one_hot",
"sum_grad",
"top_k",
"top_k_grad"});

Expand Down
26 changes: 26 additions & 0 deletions paddle/phi/kernels/add_n_kernel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"

namespace phi {

template <typename T, typename Context>
void AddNKernel(const Context& dev_ctx,
const std::vector<const DenseTensor*>& x,
DenseTensor* out);

} // namespace phi
78 changes: 78 additions & 0 deletions paddle/phi/kernels/cpu/add_n_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/add_n_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void AddNKernel(const Context& dev_ctx,
const std::vector<const DenseTensor*>& x,
DenseTensor* out) {
size_t in_num = x.size();
bool in_place = out == x[0];
auto* out_ptr = dev_ctx.template Alloc<T>(out);
if (in_num >= 1 && x[0]->initialized()) {
if (x[0]->numel() > 0) {
in_place = (x[0]->data<T>() == out_ptr);
}
}

auto result = EigenVector<T>::Flatten(*out);
auto& place = *dev_ctx.eigen_device();
int start = in_place ? 1 : 0;
if (!in_place) {
if ((in_num >= 2) && x[0]->initialized() && x[1]->initialized()) {
auto& in_0 = *x[0];
auto& in_1 = *x[1];
if (in_0.numel() && in_1.numel()) {
auto in_0_e = EigenVector<T>::Flatten(in_0);
auto in_1_e = EigenVector<T>::Flatten(in_1);
result.device(place) = in_0_e + in_1_e;
start = 2;
}
}
if (start != 2) {
VLOG(10) << "Fill with constant = 0 in sum kernel.";
funcs::SetConstant<Context, T> constant_functor;
constant_functor(dev_ctx, out, static_cast<T>(0));
}
}

// If in_place, just skip the first tensor
for (size_t i = start; i < in_num; i++) {
auto& in_t = *x[i];
if (!in_t.initialized() || in_t.numel() == 0) {
continue;
}
auto in = EigenVector<T>::Flatten(in_t);
result.device(place) = result + in;
}
}

} // namespace phi

PD_REGISTER_KERNEL(add_n,
CPU,
ALL_LAYOUT,
phi::AddNKernel,
float,
double,
int,
phi::dtype::bfloat16,
int64_t) {}
157 changes: 157 additions & 0 deletions paddle/phi/kernels/gpu/add_n_kernel.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/add_n_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"

namespace phi {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

template <class T>
__global__ void SumArrayCUDAKernel(
T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
while (id < N) {
T total(read_dst ? out[id] : static_cast<T>(0));
for (int i = 0; i < in_size; ++i) {
const T *tmp = in[i];
if (tmp) {
total += tmp[id];
}
}
out[id] = total;
id += blockDim.x * gridDim.x;
}
}

template <typename T, typename Context>
void AddNKernel(const Context &dev_ctx,
const std::vector<const DenseTensor *> &x,
DenseTensor *out) {
const size_t in_num = x.size();

constexpr size_t theory_sm_threads = 1024;
auto stream = dev_ctx.stream();

auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
auto sm_count = max_threads / theory_sm_threads;
size_t tile_size = 0;
dim3 grids;
dim3 blocks;

auto ComputeKernelParameter = [&](size_t length) {
if (length >= max_threads)
tile_size = 1024;
else if (length < max_threads && length > sm_count * 128)
tile_size = 512;
else if (length <= sm_count * 128)
tile_size = 256;
grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
blocks = dim3(tile_size, 1, 1);
};

bool in_place = x[0] == out;

if (!in_place) {
auto *out_ptr = dev_ctx.template Alloc<T>(out);
if (in_num >= 1) {
auto &in_0_tensor = *x[0];
if (in_0_tensor.numel() > 0) {
in_place = (in_0_tensor.data<T>() == out_ptr);
}
}
}

// Sum of two tensors
if (in_num == 2) {
auto &in_0 = *x[0];
auto &in_1 = *x[1];
int64_t length_0 = in_0.numel();
int64_t length_1 = in_1.numel();
if (length_0 && length_1 && in_0.initialized() && in_1.initialized()) {
auto result = EigenVector<T>::Flatten(*out);
auto &place = *dev_ctx.eigen_device();
auto in_0_e = EigenVector<T>::Flatten(in_0);
auto in_1_e = EigenVector<T>::Flatten(in_1);
result.device(place) = in_0_e + in_1_e;
} else if (length_0 && in_0.initialized()) {
auto result = EigenVector<T>::Flatten(*out);
auto &place = *dev_ctx.eigen_device();
result.device(place) = EigenVector<T>::Flatten(in_0);
} else if (length_1 && in_1.initialized()) {
auto result = EigenVector<T>::Flatten(*out);
auto &place = *dev_ctx.eigen_device();
result.device(place) = EigenVector<T>::Flatten(in_1);
}
return;
}

int start = in_place ? 1 : 0;
if (!in_place) {
funcs::SetConstant<Context, T> constant_functor;
constant_functor(dev_ctx, out, static_cast<T>(0));
}

std::vector<const T *> in_data;
int64_t lod_length = 0;
bool dst_write = false;
for (int i = start; i < in_num; ++i) {
auto &in_i = *x[i];
lod_length = in_i.numel();
if (lod_length && in_i.initialized()) {
in_data.emplace_back(in_i.data<T>());
}
}

// if indata not null, merge into one kernel call.
if (!in_data.empty()) {
auto tmp_in_array =
paddle::memory::Alloc(dev_ctx, in_data.size() * sizeof(T *));

paddle::memory::Copy(dev_ctx.GetPlace(),
tmp_in_array->ptr(),
phi::CPUPlace(),
reinterpret_cast<void *>(in_data.data()),
in_data.size() * sizeof(T *),
dev_ctx.stream());

T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
ComputeKernelParameter(lod_length);
SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(in_array_data,
out->data<T>(),
lod_length,
in_data.size(),
dst_write | in_place);
}
}

} // namespace phi

PD_REGISTER_KERNEL(add_n,
GPU,
ALL_LAYOUT,
phi::AddNKernel,
float,
double,
int,
int64_t,
phi::dtype::bfloat16,
phi::dtype::float16) {}
Loading