Skip to content

Add new one hot function in nn.functional #26183

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Aug 20, 2020
2 changes: 2 additions & 0 deletions python/paddle/fluid/input.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,12 @@
from .framework import Variable, in_dygraph_mode
from .layer_helper import LayerHelper
from .data_feeder import check_variable_and_dtype, check_dtype
from ..utils import deprecated

__all__ = ['one_hot', 'embedding']


@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
def one_hot(input, depth, allow_out_of_range=False):
"""
:alias_main: paddle.nn.functional.one_hot
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/fluid/layers/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
from .. import unique_name
from functools import reduce
from .. import core
from ...utils import deprecated
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
import paddle
from paddle.utils import deprecated
Expand Down Expand Up @@ -5831,6 +5832,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
return loss


@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
def one_hot(input, depth, allow_out_of_range=False):
"""

Expand Down
207 changes: 207 additions & 0 deletions python/paddle/fluid/tests/unittests/test_nn_functional_hot_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import math
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn.functional as functional
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, program_guard


class TestOneHotOp(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])

out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')

for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0

self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')

for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0

self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_default_dtype(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])

out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')

for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0

self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_default_dtype_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')

for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0

self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_exception(unittest.TestCase):
def setUp(self):
self.op_type = 'one_hot_v2'
self.depth = 10
self.place = core.CPUPlace()
self.dimension = 12
self.x = core.LoDTensor()
x_lod = [[4, 1, 3, 3]]
data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
self.x.set(data, self.place)
self.x.set_recursive_sequence_lengths(x_lod)

def test_check_output(self):
program = Program()
with program_guard(program):
x = fluid.layers.data(
name='x', shape=[self.dimension], dtype='float32', lod_level=1)
block = program.current_block()
one_hot_out = block.create_var(
name="one_hot_out",
type=core.VarDesc.VarType.LOD_TENSOR,
dtype='float32')
block.append_op(
type='one_hot',
inputs={'X': x},
attrs={'depth': self.depth},
outputs={'Out': one_hot_out})
exe = fluid.Executor(self.place)

def run():
exe.run(feed={'x': self.x},
fetch_list=[one_hot_out],
return_numpy=False)

self.assertRaises(core.EnforceNotMet, run)


class TestOneHotOpApi(unittest.TestCase):

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

API 测试不测试结果的正确性吗?

def test_api(self):
num_classes = 10
self._run(num_classes)

def test_api_with_depthTensor(self):
num_classes = fluid.layers.assign(input=np.array([10], dtype=np.int32))
self._run(num_classes)

def test_api_with_dygraph(self):
num_classes = 10
label = np.array(
[np.random.randint(0, num_classes - 1)
for i in range(6)]).reshape([6, 1])
with fluid.dygraph.guard():
one_hot_label = functional.one_hot(
x=fluid.dygraph.to_variable(label), num_classes=num_classes)

def _run(self, num_classes):
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = functional.one_hot(x=label, num_classes=num_classes)

place = fluid.CPUPlace()
label_data = np.array([np.random.randint(0, 10 - 1)
for i in range(6)]).reshape([6, 1])

exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
ret = exe.run(feed={'label': label_data, },
fetch_list=[one_hot_label],
return_numpy=False)


class BadInputTestOnehotV2(unittest.TestCase):
def test_error(self):
with fluid.program_guard(fluid.Program()):

def test_bad_x():
label = fluid.layers.data(
name="label",
shape=[4],
append_batch_size=False,
dtype="float32")
one_hot_label = functional.one_hot(x=label, num_classes=4)

self.assertRaises(TypeError, test_bad_x)


if __name__ == '__main__':
unittest.main()
1 change: 1 addition & 0 deletions python/paddle/nn/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,3 +193,4 @@
from .vision import space_to_depth #DEFINE_ALIAS
from .vision import yolo_box #DEFINE_ALIAS
from .vision import yolov3_loss #DEFINE_ALIAS
from .input import one_hot #DEFINE_ALIAS
110 changes: 110 additions & 0 deletions python/paddle/nn/functional/input.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import warnings
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import core
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype

__all__ = ['one_hot']


def one_hot(x, num_classes, name=None):
"""

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

别名标识这三行按照新的规定,可以删去,以后会自动补这三行内容

The operator converts each id in the input 'x' to an one-hot vector with a
num_classes length. The value in the vector dimension corresponding to the id
is 1, and the value in the remaining dimension is 0.

The shape of output Tensor is generated by appending num_classes dimension
behind the last dimension of the 'x' shape.

.. code-block:: text

Example 1:

input:
x.shape = [4]
x.data = [1, 1, 3, 0]
num_classes = 4

output:
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]

Example 2:

input:
x.shape = [4]
x.data = [1, 1, 5, 0]
num_classes = 4

output: Throw an exception for Illegal value
The second dimension in X is 5, which is greater than num_classes,
so it throws an exception.


Args:
x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
which contains at least one dimension. The data type is int32 or int64.
num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
is word id, num_classes is generally the dictionary size.

Returns:
Tensor: The one-hot representations of 'x'. A Tensor with type float32.

Examples:
.. code-block:: python

import paddle.fluid as fluid
# Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
label = fluid.data(name="label", shape=[4, 1], dtype="int64")
# label.shape = [4]
# label.data = [1, 1, 3, 0]
one_hot_label = fluid.one_hot(x=label, num_classes=4)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

代码示例用注释的形式给出具体的输入和输出

# one_hot_label.shape = [4, 4]
# one_hot_label.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
"""

if in_dygraph_mode():
return core.ops.one_hot_v2(x, 'depth', num_classes,
'allow_out_of_range', False)
else:
check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
helper = LayerHelper("one_hot_v2", **locals())

one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
if not isinstance(num_classes, Variable):
# user attribute
inputs = {'X': x}
attrs = {'depth': num_classes, 'allow_out_of_range': False}
else:
num_classes.stop_gradient = True
inputs = {'X': x, 'depth_tensor': num_classes}
attrs = {'allow_out_of_range': False}
helper.append_op(
type="one_hot_v2",
inputs=inputs,
attrs=attrs,
outputs={'Out': one_hot_out},
stop_gradient=True)
return one_hot_out