-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Add new one hot function in nn.functional #26183
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
d9f4d0e
add input.py file
yukavio ce11f99
write input.py
yukavio 3007c10
fix init file
yukavio 793c74b
add unit tests
yukavio 89ad866
fix dygraph and input shape
yukavio c73a8dd
Revert "fix dygraph and input shape"
yukavio 2baa003
fixed pylint
yukavio df913e6
fix deprecated
yukavio 2f09a7d
fix old op
yukavio 00b50fa
fix old op
yukavio a8e93e3
set check_dygraph=True
yukavio b48c9ab
Revert "set check_dygraph=True"
yukavio 9470f34
test commit
yukavio da4f6c4
fix doc and change test file name
yukavio File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
207 changes: 207 additions & 0 deletions
207
python/paddle/fluid/tests/unittests/test_nn_functional_hot_op.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import unittest | ||
import numpy as np | ||
import math | ||
from op_test import OpTest | ||
import paddle.fluid as fluid | ||
import paddle.fluid.core as core | ||
import paddle.nn.functional as functional | ||
import paddle.fluid.framework as framework | ||
from paddle.fluid.framework import Program, program_guard | ||
|
||
|
||
class TestOneHotOp(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
depth_np = np.array(10).astype('int32') | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0])]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} | ||
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_attr(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), 1, | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, 0, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_default_dtype(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
depth_np = np.array(10).astype('int32') | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0])]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} | ||
self.attrs = {} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_default_dtype_attr(OpTest): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), 1, | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, 0, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output(check_dygraph=False) | ||
|
||
|
||
class TestOneHotOp_exception(unittest.TestCase): | ||
def setUp(self): | ||
self.op_type = 'one_hot_v2' | ||
self.depth = 10 | ||
self.place = core.CPUPlace() | ||
self.dimension = 12 | ||
self.x = core.LoDTensor() | ||
x_lod = [[4, 1, 3, 3]] | ||
data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))] | ||
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1]) | ||
self.x.set(data, self.place) | ||
self.x.set_recursive_sequence_lengths(x_lod) | ||
|
||
def test_check_output(self): | ||
program = Program() | ||
with program_guard(program): | ||
x = fluid.layers.data( | ||
name='x', shape=[self.dimension], dtype='float32', lod_level=1) | ||
block = program.current_block() | ||
one_hot_out = block.create_var( | ||
name="one_hot_out", | ||
type=core.VarDesc.VarType.LOD_TENSOR, | ||
dtype='float32') | ||
block.append_op( | ||
type='one_hot', | ||
inputs={'X': x}, | ||
attrs={'depth': self.depth}, | ||
outputs={'Out': one_hot_out}) | ||
exe = fluid.Executor(self.place) | ||
|
||
def run(): | ||
exe.run(feed={'x': self.x}, | ||
fetch_list=[one_hot_out], | ||
return_numpy=False) | ||
|
||
self.assertRaises(core.EnforceNotMet, run) | ||
|
||
|
||
class TestOneHotOpApi(unittest.TestCase): | ||
def test_api(self): | ||
num_classes = 10 | ||
self._run(num_classes) | ||
|
||
def test_api_with_depthTensor(self): | ||
num_classes = fluid.layers.assign(input=np.array([10], dtype=np.int32)) | ||
self._run(num_classes) | ||
|
||
def test_api_with_dygraph(self): | ||
num_classes = 10 | ||
label = np.array( | ||
[np.random.randint(0, num_classes - 1) | ||
for i in range(6)]).reshape([6, 1]) | ||
with fluid.dygraph.guard(): | ||
one_hot_label = functional.one_hot( | ||
x=fluid.dygraph.to_variable(label), num_classes=num_classes) | ||
|
||
def _run(self, num_classes): | ||
label = fluid.layers.data(name="label", shape=[1], dtype="int64") | ||
one_hot_label = functional.one_hot(x=label, num_classes=num_classes) | ||
|
||
place = fluid.CPUPlace() | ||
label_data = np.array([np.random.randint(0, 10 - 1) | ||
for i in range(6)]).reshape([6, 1]) | ||
|
||
exe = fluid.Executor(place) | ||
exe.run(fluid.default_startup_program()) | ||
ret = exe.run(feed={'label': label_data, }, | ||
fetch_list=[one_hot_label], | ||
return_numpy=False) | ||
|
||
|
||
class BadInputTestOnehotV2(unittest.TestCase): | ||
def test_error(self): | ||
with fluid.program_guard(fluid.Program()): | ||
|
||
def test_bad_x(): | ||
label = fluid.layers.data( | ||
name="label", | ||
shape=[4], | ||
append_batch_size=False, | ||
dtype="float32") | ||
one_hot_label = functional.one_hot(x=label, num_classes=4) | ||
|
||
self.assertRaises(TypeError, test_bad_x) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
import warnings | ||
from ...fluid.framework import Variable, in_dygraph_mode | ||
from ...fluid.layer_helper import LayerHelper | ||
from ...fluid.layers import core | ||
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype | ||
|
||
__all__ = ['one_hot'] | ||
|
||
|
||
def one_hot(x, num_classes, name=None): | ||
""" | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 别名标识这三行按照新的规定,可以删去,以后会自动补这三行内容 |
||
The operator converts each id in the input 'x' to an one-hot vector with a | ||
num_classes length. The value in the vector dimension corresponding to the id | ||
is 1, and the value in the remaining dimension is 0. | ||
|
||
The shape of output Tensor is generated by appending num_classes dimension | ||
behind the last dimension of the 'x' shape. | ||
|
||
.. code-block:: text | ||
|
||
Example 1: | ||
|
||
input: | ||
x.shape = [4] | ||
x.data = [1, 1, 3, 0] | ||
num_classes = 4 | ||
|
||
output: | ||
Out.shape = [4, 4] | ||
Out.data = [[0., 1., 0., 0.], | ||
[0., 1., 0., 0.], | ||
[0., 0., 0., 1.], | ||
[1., 0., 0., 0.]] | ||
|
||
Example 2: | ||
|
||
input: | ||
x.shape = [4] | ||
x.data = [1, 1, 5, 0] | ||
num_classes = 4 | ||
|
||
output: Throw an exception for Illegal value | ||
The second dimension in X is 5, which is greater than num_classes, | ||
so it throws an exception. | ||
|
||
|
||
Args: | ||
x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` , | ||
which contains at least one dimension. The data type is int32 or int64. | ||
num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x' | ||
is word id, num_classes is generally the dictionary size. | ||
|
||
Returns: | ||
Tensor: The one-hot representations of 'x'. A Tensor with type float32. | ||
|
||
Examples: | ||
.. code-block:: python | ||
|
||
import paddle.fluid as fluid | ||
# Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4]. | ||
label = fluid.data(name="label", shape=[4, 1], dtype="int64") | ||
# label.shape = [4] | ||
# label.data = [1, 1, 3, 0] | ||
one_hot_label = fluid.one_hot(x=label, num_classes=4) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 代码示例用注释的形式给出具体的输入和输出 |
||
# one_hot_label.shape = [4, 4] | ||
# one_hot_label.data = [[0., 1., 0., 0.], | ||
[0., 1., 0., 0.], | ||
[0., 0., 0., 1.], | ||
[1., 0., 0., 0.]] | ||
""" | ||
|
||
if in_dygraph_mode(): | ||
return core.ops.one_hot_v2(x, 'depth', num_classes, | ||
'allow_out_of_range', False) | ||
else: | ||
check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2') | ||
helper = LayerHelper("one_hot_v2", **locals()) | ||
|
||
one_hot_out = helper.create_variable_for_type_inference(dtype='float32') | ||
if not isinstance(num_classes, Variable): | ||
# user attribute | ||
inputs = {'X': x} | ||
attrs = {'depth': num_classes, 'allow_out_of_range': False} | ||
else: | ||
num_classes.stop_gradient = True | ||
inputs = {'X': x, 'depth_tensor': num_classes} | ||
attrs = {'allow_out_of_range': False} | ||
helper.append_op( | ||
type="one_hot_v2", | ||
inputs=inputs, | ||
attrs=attrs, | ||
outputs={'Out': one_hot_out}, | ||
stop_gradient=True) | ||
return one_hot_out |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
API 测试不测试结果的正确性吗?