Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Getting hl_matrix_classification_error if using trainer_config settings.batch_size > 16 #44

Closed
F0REacH opened this issue Sep 6, 2016 · 3 comments
Assignees
Labels

Comments

@F0REacH
Copy link
Contributor

F0REacH commented Sep 6, 2016

Can't run train.sh if trainer_config.py settings batch_size > 16. Getting following error:
train.log:

./train.sh
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/utils/Util.cpp:144] commandline: /opt/paddle/bin/../opt/paddle/bin/paddle_trainer --config=trainer_config.py --save_dir=./model_output --job=train --use_gpu=true --trainer_count=1 --num_passes=100000 --log_period=15 --dot_period=1 --show_parameter_stats_period=100 --test_all_data_in_one_period=1 --saving_period=100 --test_period=100
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/utils/Util.cpp:113] Calling runInitFunctions
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/utils/Util.cpp:126] Call runInitFunctions done.
[INFO 2016-09-06 20:10:47,439 networks.py:1122] The input order is [input, label]
[INFO 2016-09-06 20:10:47,439 networks.py:1129] The output order is [cost_0]
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/trainer/Trainer.cpp:169] trainer mode: Normal
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/dataproviders/PyDataProvider2.cpp:219] loading dataprovider dataprovider::process
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/dataproviders/PyDataProvider2.cpp:219] loading dataprovider dataprovider::process
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/gradientmachines/GradientMachine.cpp:134] Initing parameters..
I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/gradientmachines/GradientMachine.cpp:141] Init parameters done.
F /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/cuda/src/hl_cuda_matrix.cu:322] 0x933ba8[hl_matrix_classification_error] CUDA error: invalid configuration argument
/opt/paddle/bin/paddle: line 46: 10921 Aborted (core dumped) ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2}

I'm trying to solve clasification task with LSTM model. My dataset is 180 examples, each is roughly 5000 timesteps (variable length). Each timestep is len=24 float vector labeled with int label in range [0, 132].

settings.input_types = [
    dense_vector_sequence(settings.inputSize),
    integer_value_sequence(settings.vocabSize)]

Smaller size batches eg. 12 give no error, but my data is not very redundant, so gradients become unstable. My setup is 980ti (6Gb VRAM) memory usage for batch_size=12 is ~ 20%.
trainer_config.py:
settings( batch_size=24, learning_rate=0.001, learning_method=RMSPropOptimizer() ) stacked_lstm_net(input_dim=24, class_dim=133, hid_dim=24, stacked_num=7, is_predict=is_predict)

stacked_lstm_net
# simple sequential lstm

lstm_act = TanhActivation()
fc_act = LinearActivation()

data = data_layer("input", size=input_dim)

fc1 = fc_layer(input=data, size=hid_dim, act=fc_act)
lstm1 = lstmemory(input=fc1, act=lstm_act)

inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
    fc = fc_layer(input=inputs, size=hid_dim, act=fc_act)
    lstm = lstmemory(input=fc, act=lstm_act)
    inputs = [fc, lstm]

output = fc_layer(input=[inputs[0], inputs[1]], size=class_dim,
                  act=SoftmaxActivation())

if is_predict:
    outputs(output)
else:
    outputs(classification_cost(input=output, label=data_layer('label', class_dim)))

Could you please explain this error or point me how to debug such issue?

@hedaoyuan
Copy link
Contributor

There is a bug in hl_matrix_classification_error when the number of samples to be classified more than 65536.The data each is roughly 5000 timesteps, and if batch_size = 16, than the number of samples passed into this API is 5000x16 (> 65536).
We will fix this bug as soon. Before this may be you can reduce the size of the batch_size to ensure the program runs correctly.

@F0REacH
Copy link
Contributor Author

F0REacH commented Sep 8, 2016

@hedaoyuan Thanks for clarifying. Looks like I've found another bug here: Issue #46 .

@F0REacH
Copy link
Contributor Author

F0REacH commented Sep 8, 2016

Looks like Pull #48 fixed this issue. Thanks for the quick fix

@F0REacH F0REacH closed this as completed Sep 8, 2016
@F0REacH F0REacH mentioned this issue Sep 10, 2016
qingqing01 pushed a commit to qingqing01/Paddle that referenced this issue Apr 30, 2020
thisjiang pushed a commit to thisjiang/Paddle that referenced this issue Sep 3, 2021
* unifiy constant instruction to support N-D array

* update template typename
KPatr1ck pushed a commit to KPatr1ck/Paddle that referenced this issue Sep 16, 2021
* fix MKL-based FFT implementation, MKL CDFT's FORWARD DOMAIN is always REAL for R2C and C2R
XiaoguangHu01 pushed a commit that referenced this issue Sep 18, 2021
* 1. add interface for fft;
2. add data type predicate;
3. fix paddle.roll.

* add fft c2c cufft kernel

* implement argument checking & op calling parts for fft_c2c and fftn_c2c

* add operator and opmaker definitions

* only register float and double for cpu.

* add common code for implementing FFT, add pocketfft as a dependency

* add fft c2c cufft kernel function

* fix bugs in python interface

* add support for c2r, r2c operators, op makers, kernels and kernel functors.

* test and fix bugs

* 1. fft_c2c function: add support for onesided=False;
2. add complex<float>, complex<double> support for concat and flip.

* 1. fft: fix python api bugs;
2. shape_op: add support for complex data types.

* fft c2c cufft kernel done with complie and link

* fix shape_op, add mkl placeholder

* remove mkl

* complete fft c2c in gpu

* 1. implement mkl-based fft, FFTC2CFunctor and common function exec_fft;
2. change the design, add input and output typename as template parameter for all FFTFunctors, update pocketfft-based implementation.

* complete fft c2c on gpu in ND

* complete fft c2c on gpu in ND

* complete fft c2c backward in ND

* fix MKL-based implementation

* Add frame op and CPU/GPU kernels.

* Add frame op forward unittest.

* Add frame op forward unittest.

* Remove axis parameter in FrameFunctor.

* Add frame op grad CPU/GPU kernels and unittest.

* Add frame op grad CPU/GPU kernels and unittest.

* Update doc string.

* Update after review and remove librosa requirement in unittest.

* Update grad kernel.

* add fft_c2r op

* Remove data allocation in TransCompute function.

* add fft r2c onesided with cpu(pocketfft/mkl) and gpu

* last fft c2r functor

* fix C2R and R2C for cufft, becase the direction is not an option in these cases.

* add fft r2c onesided with cpu(pocketfft/mkl) and gpu

* fix bugs in python APIs

* fix fft_c2r grad kernal

* fix bugs in python APIs

* add cuda fft c2r grad kernal functor

* clean code

* fix fft_c2r python API

* fill fft r2c result with conjugate symmetry (#19)

fill fft r2c result with conjugate symmetry

* add placeholder for unittests (#24)

* simple parameterize test function by auto generate test case from parm list (#25)

* miscellaneous fixes for python APIs (#26)

* add placeholder for unittests

* resize fft inputs before computation is n or s is provided.

* add complex kernels for pad and pad_grad

* simplify argument checking.

* add type promotion

* add int to float or complex promotion

* fix output data type for static mode

* fix fft's input dtype dispatch, import fft to paddle

* fix typos in axes checking (#27)

* fix typos in axes checking

* fix argument checking (#28)

* fix argument checking

* Add C2R Python layer normal and abnormal use cases (#29)

* documents and single case

* test c2r case

* New C2R Python layer normal and exception use cases

* complete rfft,rfft2,rfftn,ihfft,ihfft2,ihfftn unittest and doc string (#30)

* Documentation of the common interfaces of c2r and c2c (#31)

* Documentation of the common interfaces of c2r and c2c

* clean c++ code  (#32)

* clean code

* Add numpy-based implementation of spectral ops (#33)

* add numpy reference implementation of spectral ops

* Add fft_c2r numpy based implementation for unittest. (#34)

* add fft_c2r numpy implementation

* Add deframe op and stft/istft api. (#23)

* Add frame api

* Add deframe op and kernels.

* Add stft and istft apis.

* Add deframe api. Update stft and istft apis.

* Fix bug in frame_from_librosa function when input dims >= 3

* Rename deframe to overlap_add.

* Update istft.

* Update after code review.

* Add overlap_add op and stft/istft api unittest (#35)

* Add overlap_add op unittest.

* Register complex kernels of squeeze/unsquuze op.

* Add stft/istft api unittest.

* Add unittest for fft helper functions (#36)

* add unittests for fft helper functions. add complex kernel for roll op.

* complete static graph unittest for all public api (#37)

* Unittest of op with FFT C2C, C2R and r2c added (#38)

* documents and single case

* test c2r case

* New C2R Python layer normal and exception use cases

* Documentation of the common interfaces of c2r and c2c

* Unittest of op with FFT C2C, C2R and r2c added

Co-authored-by: lijiaqi <lijiaqi0612@163.com>

* add fft related options to CMakeLists.txt

* fix typos and clean code (#39)

* fix invisible character in mkl branch and fix error in error message

* clean code: remove docstring from unittest for signal.py.

* always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. (#40)

* always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype.

* fix CI Errors: numpy dtype comparison, thrust when cuda is not available (#41)

1. always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype.
2. promote floating point tensor to complex tensor ior fft_c2c and fft_c2r;
3. fix unittest to catch UnImplementedError and RuntimeError;
4. fix compile error by avoid using thrust when cuda is not available.
5.  fix sample code, use paddle.fft instead of paddle.tensor.fft

* remove inclusion of thrust, add __all__ list for fft (#42)

* Add api doc and update unittest. (#43)

* Add doc strings.
* Update overlap_add op unittest

* fix MKL-based FFT implementation (#44)

* fix MKL-based FFT implementation, MKL CDFT's FORWARD DOMAIN is always REAL for R2C and C2R

* remove code for debug (#45)

* use dynload for cufft (#46)

* use std::ptrdiff_t as datatype of stride (instead of int64_t) to avoid argument mismatch on some platforms.

* add complex support for fill_zeros_like

* use dynload for cufft

* Update doc and unittest. (#47)

* Add doc of frame op and overlap_add op.

* Update unittest.

* use dynload for cufft (#48)

1. use dynload for cufft
2. fix unittest;
3. temporarily disable Rocm.

* fix conflicts and merge upstream (#49)

fix conflicts and merge upstream

* fix compile error: only link dyload_cuda when cuda is available (#50)

* fix compile error: only link dyload_cuda when cuda is available

* fix dynload for cufft on windows (#51)

1. fix dynload for cufft on windows;
2. fix unittests.

* add NOMINMAX to compile on windows (#52)

 add NOMINMAX to compile on windows

* explicitly specify capture mode for lambdas (#55)

 explicitly specify capture mode for lambdas

* fix fft sample (#53)

* fix fft sample

* update scipy and numpy version for unittests of fft (#56)

update scipy and numpy version for unittests of fft

* Add static graph unittests of frame and overlap_add api. (#57)

* Remove cache of cuFFT & Disable ONEMKL (#59)

1. replace numpy.fft with scipy.fft as numpy<1.20 not support ortho norm
2. remove cache of cufft plans;
3. enhance error checking.
4. default WITH_ONEMKL to OFF

Co-authored-by: jeff41404 <jeff41404@gmail.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming9.bjyz.baidu.com>
Co-authored-by: KP <109694228@qq.com>
Co-authored-by: lijiaqi <lijiaqi0612@163.com>
Co-authored-by: Xiaoxu Chen <chenxx_id@163.com>
Co-authored-by: lijiaqi0612 <33169170+lijiaqi0612@users.noreply.github.com>
AnnaTrainingG pushed a commit to AnnaTrainingG/Paddle that referenced this issue Sep 29, 2021
* 1. add interface for fft;
2. add data type predicate;
3. fix paddle.roll.

* add fft c2c cufft kernel

* implement argument checking & op calling parts for fft_c2c and fftn_c2c

* add operator and opmaker definitions

* only register float and double for cpu.

* add common code for implementing FFT, add pocketfft as a dependency

* add fft c2c cufft kernel function

* fix bugs in python interface

* add support for c2r, r2c operators, op makers, kernels and kernel functors.

* test and fix bugs

* 1. fft_c2c function: add support for onesided=False;
2. add complex<float>, complex<double> support for concat and flip.

* 1. fft: fix python api bugs;
2. shape_op: add support for complex data types.

* fft c2c cufft kernel done with complie and link

* fix shape_op, add mkl placeholder

* remove mkl

* complete fft c2c in gpu

* 1. implement mkl-based fft, FFTC2CFunctor and common function exec_fft;
2. change the design, add input and output typename as template parameter for all FFTFunctors, update pocketfft-based implementation.

* complete fft c2c on gpu in ND

* complete fft c2c on gpu in ND

* complete fft c2c backward in ND

* fix MKL-based implementation

* Add frame op and CPU/GPU kernels.

* Add frame op forward unittest.

* Add frame op forward unittest.

* Remove axis parameter in FrameFunctor.

* Add frame op grad CPU/GPU kernels and unittest.

* Add frame op grad CPU/GPU kernels and unittest.

* Update doc string.

* Update after review and remove librosa requirement in unittest.

* Update grad kernel.

* add fft_c2r op

* Remove data allocation in TransCompute function.

* add fft r2c onesided with cpu(pocketfft/mkl) and gpu

* last fft c2r functor

* fix C2R and R2C for cufft, becase the direction is not an option in these cases.

* add fft r2c onesided with cpu(pocketfft/mkl) and gpu

* fix bugs in python APIs

* fix fft_c2r grad kernal

* fix bugs in python APIs

* add cuda fft c2r grad kernal functor

* clean code

* fix fft_c2r python API

* fill fft r2c result with conjugate symmetry (#19)

fill fft r2c result with conjugate symmetry

* add placeholder for unittests (#24)

* simple parameterize test function by auto generate test case from parm list (#25)

* miscellaneous fixes for python APIs (#26)

* add placeholder for unittests

* resize fft inputs before computation is n or s is provided.

* add complex kernels for pad and pad_grad

* simplify argument checking.

* add type promotion

* add int to float or complex promotion

* fix output data type for static mode

* fix fft's input dtype dispatch, import fft to paddle

* fix typos in axes checking (#27)

* fix typos in axes checking

* fix argument checking (#28)

* fix argument checking

* Add C2R Python layer normal and abnormal use cases (#29)

* documents and single case

* test c2r case

* New C2R Python layer normal and exception use cases

* complete rfft,rfft2,rfftn,ihfft,ihfft2,ihfftn unittest and doc string (PaddlePaddle#30)

* Documentation of the common interfaces of c2r and c2c (PaddlePaddle#31)

* Documentation of the common interfaces of c2r and c2c

* clean c++ code  (PaddlePaddle#32)

* clean code

* Add numpy-based implementation of spectral ops (PaddlePaddle#33)

* add numpy reference implementation of spectral ops

* Add fft_c2r numpy based implementation for unittest. (PaddlePaddle#34)

* add fft_c2r numpy implementation

* Add deframe op and stft/istft api. (#23)

* Add frame api

* Add deframe op and kernels.

* Add stft and istft apis.

* Add deframe api. Update stft and istft apis.

* Fix bug in frame_from_librosa function when input dims >= 3

* Rename deframe to overlap_add.

* Update istft.

* Update after code review.

* Add overlap_add op and stft/istft api unittest (PaddlePaddle#35)

* Add overlap_add op unittest.

* Register complex kernels of squeeze/unsquuze op.

* Add stft/istft api unittest.

* Add unittest for fft helper functions (PaddlePaddle#36)

* add unittests for fft helper functions. add complex kernel for roll op.

* complete static graph unittest for all public api (PaddlePaddle#37)

* Unittest of op with FFT C2C, C2R and r2c added (PaddlePaddle#38)

* documents and single case

* test c2r case

* New C2R Python layer normal and exception use cases

* Documentation of the common interfaces of c2r and c2c

* Unittest of op with FFT C2C, C2R and r2c added

Co-authored-by: lijiaqi <lijiaqi0612@163.com>

* add fft related options to CMakeLists.txt

* fix typos and clean code (PaddlePaddle#39)

* fix invisible character in mkl branch and fix error in error message

* clean code: remove docstring from unittest for signal.py.

* always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. (PaddlePaddle#40)

* always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype.

* fix CI Errors: numpy dtype comparison, thrust when cuda is not available (PaddlePaddle#41)

1. always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype.
2. promote floating point tensor to complex tensor ior fft_c2c and fft_c2r;
3. fix unittest to catch UnImplementedError and RuntimeError;
4. fix compile error by avoid using thrust when cuda is not available.
5.  fix sample code, use paddle.fft instead of paddle.tensor.fft

* remove inclusion of thrust, add __all__ list for fft (PaddlePaddle#42)

* Add api doc and update unittest. (PaddlePaddle#43)

* Add doc strings.
* Update overlap_add op unittest

* fix MKL-based FFT implementation (PaddlePaddle#44)

* fix MKL-based FFT implementation, MKL CDFT's FORWARD DOMAIN is always REAL for R2C and C2R

* remove code for debug (PaddlePaddle#45)

* use dynload for cufft (PaddlePaddle#46)

* use std::ptrdiff_t as datatype of stride (instead of int64_t) to avoid argument mismatch on some platforms.

* add complex support for fill_zeros_like

* use dynload for cufft

* Update doc and unittest. (PaddlePaddle#47)

* Add doc of frame op and overlap_add op.

* Update unittest.

* use dynload for cufft (PaddlePaddle#48)

1. use dynload for cufft
2. fix unittest;
3. temporarily disable Rocm.

* fix conflicts and merge upstream (PaddlePaddle#49)

fix conflicts and merge upstream

* fix compile error: only link dyload_cuda when cuda is available (PaddlePaddle#50)

* fix compile error: only link dyload_cuda when cuda is available

* fix dynload for cufft on windows (PaddlePaddle#51)

1. fix dynload for cufft on windows;
2. fix unittests.

* add NOMINMAX to compile on windows (PaddlePaddle#52)

 add NOMINMAX to compile on windows

* explicitly specify capture mode for lambdas (PaddlePaddle#55)

 explicitly specify capture mode for lambdas

* fix fft sample (PaddlePaddle#53)

* fix fft sample

* update scipy and numpy version for unittests of fft (PaddlePaddle#56)

update scipy and numpy version for unittests of fft

* Add static graph unittests of frame and overlap_add api. (PaddlePaddle#57)

* Remove cache of cuFFT & Disable ONEMKL (PaddlePaddle#59)

1. replace numpy.fft with scipy.fft as numpy<1.20 not support ortho norm
2. remove cache of cufft plans;
3. enhance error checking.
4. default WITH_ONEMKL to OFF

Co-authored-by: jeff41404 <jeff41404@gmail.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming9.bjyz.baidu.com>
Co-authored-by: KP <109694228@qq.com>
Co-authored-by: lijiaqi <lijiaqi0612@163.com>
Co-authored-by: Xiaoxu Chen <chenxx_id@163.com>
Co-authored-by: lijiaqi0612 <33169170+lijiaqi0612@users.noreply.github.com>
thisjiang pushed a commit to thisjiang/Paddle that referenced this issue Oct 28, 2021
gglin001 pushed a commit to graphcore/Paddle-fork that referenced this issue Dec 8, 2021
wangxicoding pushed a commit to wangxicoding/Paddle that referenced this issue Dec 9, 2021
zhoutianzi666 pushed a commit to zhoutianzi666/Paddle that referenced this issue May 23, 2022
[DOC] Add CXX and Python API Doc
danleifeng added a commit to danleifeng/Paddle that referenced this issue Jun 22, 2022
* fix config does not take effect; test=develop

* remove useless code;test=develop
zmxdream added a commit to zmxdream/Paddle that referenced this issue Jul 22, 2022
* [GPUPS]Fix psgpuwrapper initialization (PaddlePaddle#44468)

* Update ps_gpu_wrapper.h

* Update ps_gpu_wrapper.h

* Update ps_gpu_wrapper.cc

* remote Optimizer base Class

* remove feature value

* remove featurevalue base class

* fix hbm_thread_pool&pull_thread_pool
AnnaTrainingG pushed a commit to AnnaTrainingG/Paddle that referenced this issue Sep 19, 2022
* refine code

* test

* fix apps

* update readme

* rm unused code

* fix apps output when input is image

* clean code

* update requirements.txt
zmxdream added a commit to zmxdream/Paddle that referenced this issue Nov 2, 2022
* [GPUPS]Fix psgpuwrapper initialization (PaddlePaddle#44468)

* Update ps_gpu_wrapper.h

* Update ps_gpu_wrapper.h

* Update ps_gpu_wrapper.cc

* remote Optimizer base Class

* remove feature value

* remove featurevalue base class

* fix hbm_thread_pool&pull_thread_pool
jack603047588 referenced this issue in jack603047588/Paddle Nov 9, 2022
1. add trade weight support 2. remove pull push template struct 3. add credit support
lizexu123 pushed a commit to lizexu123/Paddle that referenced this issue Feb 23, 2024
hanhaowen-mt pushed a commit to hanhaowen-mt/Paddle that referenced this issue Feb 29, 2024
[MTAI-484] fix(build): optimize new files for MUSA
feifei-111 pushed a commit to feifei-111/Paddle that referenced this issue Mar 10, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants