|
| 1 | +import paddle.v2 as paddle |
| 2 | +import paddle.v2.framework.layers as layers |
| 3 | +import paddle.v2.framework.core as core |
| 4 | +import paddle.v2.framework.optimizer as optimizer |
| 5 | + |
| 6 | +from paddle.v2.framework.framework import Program, g_program |
| 7 | +from paddle.v2.framework.executor import Executor |
| 8 | + |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +init_program = Program() |
| 12 | +program = Program() |
| 13 | + |
| 14 | +embed_size = 32 |
| 15 | +hidden_size = 256 |
| 16 | +N = 5 |
| 17 | +batch_size = 32 |
| 18 | + |
| 19 | +word_dict = paddle.dataset.imikolov.build_dict() |
| 20 | +dict_size = len(word_dict) |
| 21 | + |
| 22 | +first_word = layers.data( |
| 23 | + name='firstw', |
| 24 | + shape=[1], |
| 25 | + data_type='int32', |
| 26 | + program=program, |
| 27 | + init_program=init_program) |
| 28 | +second_word = layers.data( |
| 29 | + name='secondw', |
| 30 | + shape=[1], |
| 31 | + data_type='int32', |
| 32 | + program=program, |
| 33 | + init_program=init_program) |
| 34 | +third_word = layers.data( |
| 35 | + name='thirdw', |
| 36 | + shape=[1], |
| 37 | + data_type='int32', |
| 38 | + program=program, |
| 39 | + init_program=init_program) |
| 40 | +forth_word = layers.data( |
| 41 | + name='forthw', |
| 42 | + shape=[1], |
| 43 | + data_type='int32', |
| 44 | + program=program, |
| 45 | + init_program=init_program) |
| 46 | +next_word = layers.data( |
| 47 | + name='nextw', |
| 48 | + shape=[1], |
| 49 | + data_type='int32', |
| 50 | + program=program, |
| 51 | + init_program=init_program) |
| 52 | + |
| 53 | +embed_param_attr_1 = { |
| 54 | + 'name': 'shared_w', |
| 55 | + 'init_attr': { |
| 56 | + 'max': 1.0, |
| 57 | + 'type': 'uniform_random', |
| 58 | + 'min': -1.0 |
| 59 | + } |
| 60 | +} |
| 61 | +embed_param_attr_2 = {'name': 'shared_w'} |
| 62 | + |
| 63 | +embed_first = layers.embedding( |
| 64 | + input=first_word, |
| 65 | + size=[dict_size, embed_size], |
| 66 | + data_type='float32', |
| 67 | + param_attr=embed_param_attr_1, |
| 68 | + program=program, |
| 69 | + init_program=init_program) |
| 70 | +embed_second = layers.embedding( |
| 71 | + input=second_word, |
| 72 | + size=[dict_size, embed_size], |
| 73 | + data_type='float32', |
| 74 | + param_attr=embed_param_attr_2, |
| 75 | + program=program, |
| 76 | + init_program=init_program) |
| 77 | + |
| 78 | +embed_third = layers.embedding( |
| 79 | + input=third_word, |
| 80 | + size=[dict_size, embed_size], |
| 81 | + data_type='float32', |
| 82 | + param_attr=embed_param_attr_2, |
| 83 | + program=program, |
| 84 | + init_program=init_program) |
| 85 | +embed_forth = layers.embedding( |
| 86 | + input=forth_word, |
| 87 | + size=[dict_size, embed_size], |
| 88 | + data_type='float32', |
| 89 | + param_attr=embed_param_attr_2, |
| 90 | + program=program, |
| 91 | + init_program=init_program) |
| 92 | + |
| 93 | +concat_embed = layers.concat( |
| 94 | + input=[embed_first, embed_second, embed_third, embed_forth], |
| 95 | + axis=1, |
| 96 | + program=program, |
| 97 | + init_program=init_program) |
| 98 | + |
| 99 | +hidden1 = layers.fc(input=concat_embed, |
| 100 | + size=hidden_size, |
| 101 | + act='sigmoid', |
| 102 | + program=program, |
| 103 | + init_program=init_program) |
| 104 | +predict_word = layers.fc(input=hidden1, |
| 105 | + size=dict_size, |
| 106 | + act='softmax', |
| 107 | + program=program, |
| 108 | + init_program=init_program) |
| 109 | +cost = layers.cross_entropy( |
| 110 | + input=predict_word, |
| 111 | + label=next_word, |
| 112 | + program=program, |
| 113 | + init_program=init_program) |
| 114 | +avg_cost = layers.mean(x=cost, program=program, init_program=init_program) |
| 115 | + |
| 116 | +sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) |
| 117 | +opts = sgd_optimizer.minimize(avg_cost) |
| 118 | + |
| 119 | +train_reader = paddle.batch( |
| 120 | + paddle.dataset.imikolov.train(word_dict, N), batch_size) |
| 121 | + |
| 122 | +place = core.CPUPlace() |
| 123 | +exe = Executor(place) |
| 124 | + |
| 125 | +exe.run(init_program, feed={}, fetch_list=[]) |
| 126 | +PASS_NUM = 100 |
| 127 | +for pass_id in range(PASS_NUM): |
| 128 | + for data in train_reader(): |
| 129 | + input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)] |
| 130 | + input_data = map(lambda x: np.array(x).astype("int32"), input_data) |
| 131 | + input_data = map(lambda x: np.expand_dims(x, axis=1), input_data) |
| 132 | + |
| 133 | + first_data = input_data[0] |
| 134 | + first_tensor = core.LoDTensor() |
| 135 | + first_tensor.set(first_data, place) |
| 136 | + |
| 137 | + second_data = input_data[0] |
| 138 | + second_tensor = core.LoDTensor() |
| 139 | + second_tensor.set(second_data, place) |
| 140 | + |
| 141 | + third_data = input_data[0] |
| 142 | + third_tensor = core.LoDTensor() |
| 143 | + third_tensor.set(third_data, place) |
| 144 | + |
| 145 | + forth_data = input_data[0] |
| 146 | + forth_tensor = core.LoDTensor() |
| 147 | + forth_tensor.set(forth_data, place) |
| 148 | + |
| 149 | + next_data = input_data[0] |
| 150 | + next_tensor = core.LoDTensor() |
| 151 | + next_tensor.set(next_data, place) |
| 152 | + |
| 153 | + outs = exe.run(program, |
| 154 | + feed={ |
| 155 | + 'firstw': first_tensor, |
| 156 | + 'secondw': second_tensor, |
| 157 | + 'thirdw': third_tensor, |
| 158 | + 'forthw': forth_tensor, |
| 159 | + 'nextw': next_tensor |
| 160 | + }, |
| 161 | + fetch_list=[avg_cost]) |
| 162 | + out = np.array(outs[0]) |
| 163 | + if out[0] < 10.0: |
| 164 | + exit(0) # if avg cost less than 10.0, we think our code is good. |
| 165 | +exit(1) |
0 commit comments