|
| 1 | +/* Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +you may not use this file except in compliance with the License. |
| 4 | +You may obtain a copy of the License at |
| 5 | +http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +Unless required by applicable law or agreed to in writing, software |
| 7 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +See the License for the specific language governing permissions and |
| 10 | +limitations under the License. */ |
| 11 | + |
| 12 | +#include <unordered_map> |
| 13 | +#include <unordered_set> |
| 14 | + |
| 15 | +#include "glog/logging.h" |
| 16 | +#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h" |
| 17 | +#include "paddle/phi/core/distributed/auto_parallel/inferspmd_utils.h" |
| 18 | +#include "paddle/phi/core/distributed/auto_parallel/utils.h" |
| 19 | +#include "paddle/phi/infermeta/spmd_rules/einsum.h" |
| 20 | +#include "paddle/phi/infermeta/spmd_rules/spmd_rule_macro_define.h" |
| 21 | +#include "paddle/phi/infermeta/spmd_rules/utils.h" |
| 22 | +#include "paddle/utils/string/string_helper.h" |
| 23 | + |
| 24 | +namespace phi::distributed { |
| 25 | + |
| 26 | +using phi::distributed::auto_parallel::str_join; |
| 27 | +void ParseEinsumEquation(const std::string& equation, |
| 28 | + std::vector<std::string>* operands, |
| 29 | + std::string* output) { |
| 30 | + auto results = paddle::string::split_string(equation, "->"); |
| 31 | + auto left = results[0]; |
| 32 | + *operands = paddle::string::split_string(left, ","); |
| 33 | + *output = results[1]; |
| 34 | +} |
| 35 | + |
| 36 | +void ConstraintOnDiagLabel(std::vector<std::string>* operands, |
| 37 | + std::string* output) { |
| 38 | + // Empirically, for fwd calculation, only those diagonal labels in output |
| 39 | + // should not be sharded. e.g. iji->ii (diag), 'i' cannot be sharded; |
| 40 | + // e.g. iji->i (trace), 'i' can be sharded. |
| 41 | + // But during bwd calculation, input and output are switched. |
| 42 | + // e.g. in the 'trace' case above when calculating x_grad, it will use |
| 43 | + // i->ii, so 'i' cannot be sharded. |
| 44 | + // Thus we simply set the spmd rule here to replace all diagonal labels as 1. |
| 45 | + |
| 46 | + // find diagonal labels |
| 47 | + std::unordered_map<char, int> char_count; |
| 48 | + std::unordered_set<char> diagonal_labels; |
| 49 | + for (auto op : *operands) { |
| 50 | + for (char c : op) { |
| 51 | + char_count[c]++; |
| 52 | + if (char_count[c] > 1) { |
| 53 | + diagonal_labels.insert(c); |
| 54 | + } |
| 55 | + } |
| 56 | + char_count.clear(); |
| 57 | + } |
| 58 | + for (char c : *output) { |
| 59 | + char_count[c]++; |
| 60 | + if (char_count[c] > 1) { |
| 61 | + diagonal_labels.insert(c); |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + if (diagonal_labels.size()) { |
| 66 | + // replace input operands' diagonal labels |
| 67 | + for (size_t i = 0; i < operands->size(); ++i) { |
| 68 | + for (size_t j = 0; j < (*operands)[i].size(); ++j) { |
| 69 | + if (diagonal_labels.find((*operands)[i][j]) != diagonal_labels.end()) { |
| 70 | + (*operands)[i].replace(j, 1, "1"); |
| 71 | + } |
| 72 | + } |
| 73 | + } |
| 74 | + // replace output's diagonal labels |
| 75 | + for (size_t i = 0; i < output->size(); ++i) { |
| 76 | + if (diagonal_labels.find((*output)[i]) != diagonal_labels.end()) { |
| 77 | + output->replace(i, 1, "1"); |
| 78 | + } |
| 79 | + } |
| 80 | + } |
| 81 | +} |
| 82 | + |
| 83 | +bool IsEinsumOuter(const std::vector<std::string>& inputs, |
| 84 | + const std::string& output) { |
| 85 | + // Outer case: e.g. i, j -> ij; ij, kl -> ijkl |
| 86 | + if (inputs.size() != 2) { |
| 87 | + return false; |
| 88 | + } |
| 89 | + |
| 90 | + std::unordered_map<char, int> input_char_count; |
| 91 | + for (const auto& in : inputs) { |
| 92 | + for (char c : in) { |
| 93 | + input_char_count[c]++; |
| 94 | + if (input_char_count[c] > 1) { |
| 95 | + return false; |
| 96 | + } |
| 97 | + } |
| 98 | + } |
| 99 | + |
| 100 | + std::unordered_map<char, int> output_char_count; |
| 101 | + for (char c : output) { |
| 102 | + output_char_count[c]++; |
| 103 | + } |
| 104 | + if (input_char_count != output_char_count) { |
| 105 | + return false; |
| 106 | + } |
| 107 | + return true; |
| 108 | +} |
| 109 | + |
| 110 | +void ConstraintOnOuter(const phi::distributed::TensorDistAttr& x_attr, |
| 111 | + const phi::distributed::TensorDistAttr& y_attr, |
| 112 | + int x_ndim, |
| 113 | + int y_ndim, |
| 114 | + std::vector<int64_t>* x_dims_mapping, |
| 115 | + std::vector<int64_t>* y_dims_mapping) { |
| 116 | + // For outer operation, only one operand and one dimension can be sharded |
| 117 | + // todo: if multiple dimensions are requested to be sharded, decide which |
| 118 | + // operand and which dimension to be sharded could be better |
| 119 | + |
| 120 | + // we simply choose the first operand requested to be sharded and the |
| 121 | + // first dimension requested to be sharded here |
| 122 | + if (x_attr.is_shard()) { |
| 123 | + bool meet_shard_axis = false; |
| 124 | + for (int i = 0; i < x_ndim; ++i) { |
| 125 | + if ((*x_dims_mapping)[i] != -1) { |
| 126 | + meet_shard_axis = true; |
| 127 | + continue; |
| 128 | + } |
| 129 | + if (meet_shard_axis) { |
| 130 | + (*x_dims_mapping)[i] = -1; |
| 131 | + } |
| 132 | + } |
| 133 | + // reset y_dims_mapping to all replicated |
| 134 | + for (int i = 0; i < y_ndim; ++i) { |
| 135 | + (*y_dims_mapping)[i] = -1; |
| 136 | + } |
| 137 | + } else if (y_attr.is_shard()) { |
| 138 | + bool meet_shard_axis = false; |
| 139 | + for (int i = 0; i < y_ndim; ++i) { |
| 140 | + if ((*y_dims_mapping)[i] != -1) { |
| 141 | + meet_shard_axis = true; |
| 142 | + continue; |
| 143 | + } |
| 144 | + if (meet_shard_axis) { |
| 145 | + (*y_dims_mapping)[i] = -1; |
| 146 | + } |
| 147 | + } |
| 148 | + // no need to reset x_dims_mapping |
| 149 | + } |
| 150 | +} |
| 151 | + |
| 152 | +SpmdInfo EinsumInferSpmd(const std::vector<DistMetaTensor>& inputs, |
| 153 | + const std::string& equation) { |
| 154 | + PADDLE_ENFORCE_LE( |
| 155 | + inputs.size(), |
| 156 | + 2, |
| 157 | + common::errors::InvalidArgument( |
| 158 | + "EinsumOp only support len(operands) between (0, 2]. Use " |
| 159 | + "opt_einsum first to convert multi-variable to binary-variable.")); |
| 160 | + |
| 161 | + std::vector<std::string> operands; |
| 162 | + std::string right; |
| 163 | + // ellipsis labels are already parsed in python API (einsum_v2) |
| 164 | + ParseEinsumEquation(equation, &operands, &right); |
| 165 | + // diagonal case |
| 166 | + ConstraintOnDiagLabel(&operands, &right); |
| 167 | + |
| 168 | + if (inputs.size() == 1) { |
| 169 | + // single operand |
| 170 | + DistMetaTensor x = inputs[0]; |
| 171 | + EXTRACT_SHAPE_AND_DIST_ATTR(x); |
| 172 | + std::vector<int64_t> x_dims_mapping(x_dims_mapping_src); |
| 173 | + |
| 174 | + VLOG(6) << "EinsumInferSpmd InferForward Inputs: " |
| 175 | + << "X shape: [" << str_join(x_shape) << "], x_dims_mapping: [" |
| 176 | + << str_join(x_dims_mapping); |
| 177 | + |
| 178 | + // Step1: Sharding Propagation |
| 179 | + // Step1.1: Merge input shardings |
| 180 | + std::unordered_map<std::string, int64_t> axis_to_dim_map = |
| 181 | + ShardingMergeForTensors({{operands[0], x_dims_mapping}}); |
| 182 | + |
| 183 | + // Step1.2: Infer output dims mapping |
| 184 | + TensorDistAttr x_dist_attr_dst = |
| 185 | + CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 186 | + x_dist_attr_dst.set_dims_mapping( |
| 187 | + GetDimsMappingForAxes(operands[0], axis_to_dim_map)); |
| 188 | + |
| 189 | + std::vector<int64_t> fake_output_shape(right.size(), 1); |
| 190 | + TensorDistAttr out_dist_attr_dst(fake_output_shape); |
| 191 | + out_dist_attr_dst.set_process_mesh(x_dist_attr_src.process_mesh()); |
| 192 | + out_dist_attr_dst.set_dims_mapping( |
| 193 | + GetDimsMappingForAxes(right, axis_to_dim_map)); |
| 194 | + |
| 195 | + // Step2: Handle Partial |
| 196 | + // Step2.1 Output Partial |
| 197 | + std::vector<int64_t> partial_on_dims = |
| 198 | + ResoluteOutputPartialDimension(axis_to_dim_map, right); |
| 199 | + out_dist_attr_dst.set_partial_status(partial_on_dims); |
| 200 | + |
| 201 | + VLOG(4) << "x_axes: " << operands[0] << " out_axes: " << right; |
| 202 | + LOG_SPMD_INPUT(x); |
| 203 | + VLOG(4) << "out"; |
| 204 | + VLOG(4) << "dist_attr: [" << out_dist_attr_dst.to_string() << "]"; |
| 205 | + |
| 206 | + std::vector<TensorDistAttr> input_dist_attrs; |
| 207 | + input_dist_attrs.push_back(x_dist_attr_dst); |
| 208 | + return {{input_dist_attrs}, {out_dist_attr_dst}}; |
| 209 | + } else { |
| 210 | + // double operands |
| 211 | + DistMetaTensor x = inputs[0]; |
| 212 | + DistMetaTensor y = inputs[1]; |
| 213 | + EXTRACT_SHAPE_AND_DIST_ATTR(x); |
| 214 | + EXTRACT_SHAPE_AND_DIST_ATTR(y); |
| 215 | + std::vector<int64_t> x_dims_mapping(x_dims_mapping_src); |
| 216 | + std::vector<int64_t> y_dims_mapping(y_dims_mapping_src); |
| 217 | + |
| 218 | + if (IsEinsumOuter(operands, right)) { |
| 219 | + ConstraintOnOuter(x_dist_attr_src, |
| 220 | + y_dist_attr_src, |
| 221 | + x_ndim, |
| 222 | + y_ndim, |
| 223 | + &x_dims_mapping, |
| 224 | + &y_dims_mapping); |
| 225 | + } |
| 226 | + VLOG(6) << "EinsumInferSpmd InferForward Inputs: " |
| 227 | + << "X shape: [" << str_join(x_shape) << "], x_dims_mapping: [" |
| 228 | + << str_join(x_dims_mapping) << "], Y shape: [" << str_join(y_shape) |
| 229 | + << "], y_dims_mapping: [" << str_join(y_dims_mapping); |
| 230 | + |
| 231 | + // Step1: Sharding Propagation |
| 232 | + // Step1.1: Merge input shardings |
| 233 | + std::unordered_map<std::string, int64_t> axis_to_dim_map = |
| 234 | + ShardingMergeForTensors( |
| 235 | + {{operands[0], x_dims_mapping}, {operands[1], y_dims_mapping}}); |
| 236 | + |
| 237 | + // Step1.2: Infer output dims mapping |
| 238 | + TensorDistAttr x_dist_attr_dst = |
| 239 | + CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 240 | + TensorDistAttr y_dist_attr_dst = |
| 241 | + CopyTensorDistAttrForOutput(y_dist_attr_src); |
| 242 | + x_dist_attr_dst.set_dims_mapping( |
| 243 | + GetDimsMappingForAxes(operands[0], axis_to_dim_map)); |
| 244 | + y_dist_attr_dst.set_dims_mapping( |
| 245 | + GetDimsMappingForAxes(operands[1], axis_to_dim_map)); |
| 246 | + |
| 247 | + std::vector<int64_t> fake_output_shape(right.size(), 1); |
| 248 | + TensorDistAttr out_dist_attr_dst(fake_output_shape); |
| 249 | + out_dist_attr_dst.set_process_mesh(x_dist_attr_src.process_mesh()); |
| 250 | + out_dist_attr_dst.set_dims_mapping( |
| 251 | + GetDimsMappingForAxes(right, axis_to_dim_map)); |
| 252 | + |
| 253 | + // Step2: Handle Partial |
| 254 | + // Step2.1 Output Partial |
| 255 | + std::vector<int64_t> partial_on_dims = |
| 256 | + ResoluteOutputPartialDimension(axis_to_dim_map, right); |
| 257 | + out_dist_attr_dst.set_partial_status(partial_on_dims); |
| 258 | + |
| 259 | + VLOG(4) << "x_axes: " << operands[0] << " y_axes: " << operands[1] |
| 260 | + << " out_axes: " << right; |
| 261 | + LOG_SPMD_INPUT(x); |
| 262 | + LOG_SPMD_INPUT(y); |
| 263 | + VLOG(4) << "out"; |
| 264 | + VLOG(4) << "dist_attr: [" << out_dist_attr_dst.to_string() << "]"; |
| 265 | + |
| 266 | + std::vector<TensorDistAttr> input_dist_attrs; |
| 267 | + input_dist_attrs.push_back(x_dist_attr_dst); |
| 268 | + input_dist_attrs.push_back(y_dist_attr_dst); |
| 269 | + |
| 270 | + return {{input_dist_attrs}, {out_dist_attr_dst}}; |
| 271 | + } |
| 272 | +} |
| 273 | + |
| 274 | +SpmdInfo EinsumGradInferSpmd(const std::vector<DistMetaTensor>& inputs, |
| 275 | + const std::vector<DistMetaTensor>& inner_cache, |
| 276 | + const DistMetaTensor& out_grad, |
| 277 | + const std::string& equation) { |
| 278 | + PADDLE_ENFORCE_LE( |
| 279 | + inputs.size(), |
| 280 | + 2, |
| 281 | + common::errors::InvalidArgument( |
| 282 | + "EinsumOp only support len(operands) between (0, 2]. Use " |
| 283 | + "opt_einsum first to convert multi-variable to binary-variable.")); |
| 284 | + |
| 285 | + std::vector<std::string> operands; |
| 286 | + std::string right; |
| 287 | + // ellipsis labels are already parsed in python API (einsum_v2) |
| 288 | + ParseEinsumEquation(equation, &operands, &right); |
| 289 | + // diagonal case |
| 290 | + ConstraintOnDiagLabel(&operands, &right); |
| 291 | + |
| 292 | + EXTRACT_SHAPE_AND_DIST_ATTR(out_grad); |
| 293 | + if (inputs.size() == 1) { |
| 294 | + // single operand |
| 295 | + DistMetaTensor x = inputs[0]; |
| 296 | + EXTRACT_SHAPE_AND_DIST_ATTR(x); |
| 297 | + |
| 298 | + // For reduce label type in equation "right->left" used in backward |
| 299 | + // calculation, the gradient on those axes are tiled and copied, so we can |
| 300 | + // just copy the dims_mapping on those axes from input to input_grad. |
| 301 | + // Therefore we also merge the input axes here. |
| 302 | + std::unordered_map<std::string, int64_t> axis_to_dim_map = |
| 303 | + ShardingMergeForTensors({{operands[0], x_dims_mapping_src}, |
| 304 | + {right, out_grad_dims_mapping_src}}); |
| 305 | + |
| 306 | + TensorDistAttr x_dist_attr_dst = |
| 307 | + CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 308 | + x_dist_attr_dst.set_dims_mapping( |
| 309 | + GetDimsMappingForAxes(operands[0], axis_to_dim_map)); |
| 310 | + |
| 311 | + TensorDistAttr out_grad_dist_attr_dst(out_grad_dist_attr_src); |
| 312 | + out_grad_dist_attr_dst.set_dims_mapping( |
| 313 | + GetDimsMappingForAxes(right, axis_to_dim_map)); |
| 314 | + |
| 315 | + std::vector<TensorDistAttr> input_dist_attrs; |
| 316 | + input_dist_attrs.push_back(x_dist_attr_dst); |
| 317 | + return {{input_dist_attrs, out_grad_dist_attr_dst}, {input_dist_attrs}}; |
| 318 | + } else { |
| 319 | + // double operands |
| 320 | + DistMetaTensor x = inputs[0]; |
| 321 | + DistMetaTensor y = inputs[1]; |
| 322 | + EXTRACT_SHAPE_AND_DIST_ATTR(x); |
| 323 | + EXTRACT_SHAPE_AND_DIST_ATTR(y); |
| 324 | + std::vector<int64_t> x_dims_mapping(x_dims_mapping_src); |
| 325 | + std::vector<int64_t> y_dims_mapping(y_dims_mapping_src); |
| 326 | + std::vector<int64_t> out_grad_dims_mapping(out_grad_dims_mapping_src); |
| 327 | + |
| 328 | + if (IsEinsumOuter(operands, right)) { |
| 329 | + ConstraintOnOuter(x_dist_attr_src, |
| 330 | + y_dist_attr_src, |
| 331 | + x_ndim, |
| 332 | + y_ndim, |
| 333 | + &x_dims_mapping, |
| 334 | + &y_dims_mapping); |
| 335 | + } |
| 336 | + // out_grad, x, y |
| 337 | + std::unordered_map<std::string, int64_t> fwd_axis_to_dim_map = |
| 338 | + ShardingMergeForTensors( |
| 339 | + {{operands[0], x_dims_mapping}, {operands[1], y_dims_mapping}}); |
| 340 | + out_grad_dims_mapping = GetDimsMappingForAxes(right, fwd_axis_to_dim_map); |
| 341 | + TensorDistAttr out_grad_dist_attr_dst = |
| 342 | + CopyTensorDistAttrForOutput(out_grad_dist_attr_src); |
| 343 | + out_grad_dist_attr_dst.set_dims_mapping( |
| 344 | + GetDimsMappingForAxes(right, fwd_axis_to_dim_map)); |
| 345 | + TensorDistAttr x_dist_attr_dst = |
| 346 | + CopyTensorDistAttrForOutput(x_dist_attr_src); |
| 347 | + x_dist_attr_dst.set_dims_mapping( |
| 348 | + GetDimsMappingForAxes(operands[0], fwd_axis_to_dim_map)); |
| 349 | + TensorDistAttr y_dist_attr_dst = |
| 350 | + CopyTensorDistAttrForOutput(y_dist_attr_src); |
| 351 | + y_dist_attr_dst.set_dims_mapping( |
| 352 | + GetDimsMappingForAxes(operands[1], fwd_axis_to_dim_map)); |
| 353 | + |
| 354 | + // For reduce label type in equation "left[1], right->left[0]" and "right, |
| 355 | + // left[0]->left[1]" used in backward calculation, the gradient on those |
| 356 | + // axes are tiled and copied, so we can just copy the dims_mapping on those |
| 357 | + // axes from input to input_grad. Therefore we just copy the fwd inferred |
| 358 | + // input_dist_attr for input_grad_dist_attr and then handle partial. |
| 359 | + |
| 360 | + // dx = einsum(y, d_out) |
| 361 | + TensorDistAttr x_grad_dist_attr_dst = TensorDistAttr(x_dist_attr_dst); |
| 362 | + std::unordered_map<std::string, int64_t> axis_to_dim_map_for_dx = |
| 363 | + ShardingMergeForTensors( |
| 364 | + {{operands[1], y_dims_mapping}, {right, out_grad_dims_mapping}}); |
| 365 | + // Handle Partial for dx |
| 366 | + std::vector<int64_t> partial_on_dx_dims = |
| 367 | + ResoluteOutputPartialDimension(axis_to_dim_map_for_dx, operands[0]); |
| 368 | + x_grad_dist_attr_dst.set_partial_status(partial_on_dx_dims); |
| 369 | + |
| 370 | + // dy = einsum(d_out, x) |
| 371 | + TensorDistAttr y_grad_dist_attr_dst = TensorDistAttr(y_dist_attr_dst); |
| 372 | + std::unordered_map<std::string, int64_t> axis_to_dim_map_for_dy = |
| 373 | + ShardingMergeForTensors( |
| 374 | + {{right, out_grad_dims_mapping}, {operands[0], x_dims_mapping}}); |
| 375 | + // Handle Partial for dy |
| 376 | + std::vector<int64_t> partial_on_dy_dims = |
| 377 | + ResoluteOutputPartialDimension(axis_to_dim_map_for_dy, operands[1]); |
| 378 | + y_grad_dist_attr_dst.set_partial_status(partial_on_dy_dims); |
| 379 | + |
| 380 | + std::vector<TensorDistAttr> input_dist_attrs; |
| 381 | + input_dist_attrs.push_back(x_dist_attr_dst); |
| 382 | + input_dist_attrs.push_back(y_dist_attr_dst); |
| 383 | + std::vector<TensorDistAttr> input_grad_dist_attrs; |
| 384 | + input_grad_dist_attrs.push_back(x_grad_dist_attr_dst); |
| 385 | + input_grad_dist_attrs.push_back(y_grad_dist_attr_dst); |
| 386 | + return {{input_dist_attrs, out_grad_dist_attr_dst}, |
| 387 | + {input_grad_dist_attrs}}; |
| 388 | + } |
| 389 | +} |
| 390 | +} // namespace phi::distributed |
0 commit comments