|
| 1 | +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import numpy as np |
| 16 | +from .... import core |
| 17 | +from ....framework import IrGraph |
| 18 | +from ....framework import IrNode |
| 19 | + |
| 20 | +__all__ = ['TransformForMkldnnPass'] |
| 21 | + |
| 22 | + |
| 23 | +class TransformForMkldnnPass(object): |
| 24 | + """ |
| 25 | + Convert QuantizationFreezePass generated IrGraph to MKL-DNN supported INT8 |
| 26 | + IrGraph. Following transformations did in this pass: |
| 27 | + 1. Convert int8 range weights with float32 data type, which are generated by |
| 28 | + the QuantizationFreezePass, to float32 range weights with float32 data type |
| 29 | + by using the corresponding scales. This conversion is because MKL-DNN INT8 |
| 30 | + conv2d kernel now only supports float32 weights input, will do weights |
| 31 | + quantization inside the conv2d kernel. |
| 32 | + 2. Create the new conv2d op with the converted weights and link its output |
| 33 | + to fake_dequantize_abs_max op's output and set conv2d's attribute "force_fp32 |
| 34 | + _output" as true |
| 35 | + 3. Transform fake_quantize_xx op to quantize op |
| 36 | + 4. Remove fake_dequantize_abs_max op |
| 37 | + """ |
| 38 | + |
| 39 | + def __init__(self, scope=None, place=None): |
| 40 | + """ |
| 41 | + Args: |
| 42 | + scope(fluid.Scope): scope is used to initialize the new parameters. |
| 43 | + place(fluid.CPUPlace): place is used to initialize the new parameters. |
| 44 | +
|
| 45 | +
|
| 46 | + Examples: |
| 47 | + .. code-block:: python |
| 48 | + # The original graph will be rewrite. |
| 49 | + import paddle.fluid as fluid |
| 50 | + from paddle.fluid.contrib.slim.quantization \ |
| 51 | + import TransformForMkldnnPass |
| 52 | + from paddle.fluid.framework import IrGraph |
| 53 | + from paddle.fluid import core |
| 54 | + |
| 55 | + graph = IrGraph(core.Graph(fluid.Program().desc), for_test=False) |
| 56 | + place = fluid.CPUPlace() |
| 57 | + mkldnn_pass = TransformForMkldnnPass(fluid.global_scope(), |
| 58 | + place) |
| 59 | + mkldnn_pass.apply(graph) |
| 60 | + """ |
| 61 | + |
| 62 | + self._scope = scope |
| 63 | + self._place = place |
| 64 | + |
| 65 | + self.quantize_type = [ |
| 66 | + 'fake_quantize_moving_average_abs_max', |
| 67 | + 'fake_quantize_range_abs_max' |
| 68 | + ] |
| 69 | + self.dequantize_type = ['fake_dequantize_max_abs'] |
| 70 | + |
| 71 | + self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul'] |
| 72 | + self._conv_ops = ['conv2d', 'depthwise_conv2d'] |
| 73 | + |
| 74 | + self.InScale = {} |
| 75 | + self.max_range = {} |
| 76 | + self.conv_new_output = {} |
| 77 | + self.s8_max = 127 |
| 78 | + # Temporary code for keeping the mul op as fake quantization |
| 79 | + #TODO Intel: Remove the following code when mul int8 mkldnn |
| 80 | + # kernel enabled |
| 81 | + self.mul_input_id = [] |
| 82 | + self.mul_output_id = [] |
| 83 | + |
| 84 | + def apply(self, graph): |
| 85 | + """ |
| 86 | + Quantize the graph for running MKL-DNN INT8 inference. According |
| 87 | + to activation quantization type, the graph will transform fake |
| 88 | + quantize ops to quantize ops and remove the fake dequantize ops. |
| 89 | + |
| 90 | + Args: |
| 91 | + graph(IrGraph): the applied graph. |
| 92 | + """ |
| 93 | + |
| 94 | + assert isinstance(graph, |
| 95 | + IrGraph), 'graph must be the instance of IrGraph.' |
| 96 | + ops = graph.all_op_nodes() |
| 97 | + |
| 98 | + persistable_vars = [p.name() for p in graph.all_persistable_nodes()] |
| 99 | + # Collect the InScales and max_range to calculate the new scales for MKL-DNN |
| 100 | + # INT8 conv2d |
| 101 | + for op_node in ops: |
| 102 | + if op_node.name() in self.dequantize_type: |
| 103 | + input_name = op_node.input("X")[0] |
| 104 | + scale_name = op_node.input("Scale")[0] |
| 105 | + self.InScale[input_name] = self._load_param(self._scope, |
| 106 | + scale_name)[0] |
| 107 | + self.max_range[input_name] = op_node.op().attr("max_range") |
| 108 | + self.conv_new_output[input_name] = op_node.output("Out")[0] |
| 109 | + # Temporary graph transform on keeping the mul op |
| 110 | + # TODO Intel: Remove following code |
| 111 | + elif op_node.name() in ['mul']: |
| 112 | + input_node = graph._find_node_by_name(op_node.inputs, |
| 113 | + op_node.input('X')[0]) |
| 114 | + output_node = graph._find_node_by_name(op_node.outputs, |
| 115 | + op_node.output('Out')[0]) |
| 116 | + self.mul_input_id.append(input_node.id()) |
| 117 | + self.mul_output_id.append(output_node.id()) |
| 118 | + |
| 119 | + for op_node in ops: |
| 120 | + if op_node.name() in self._conv_ops: |
| 121 | + self._transform_to_conv_mkldnn(graph, op_node) |
| 122 | + elif op_node.name() in self.quantize_type: |
| 123 | + self._transform_to_quantize_mkldnn(graph, op_node) |
| 124 | + elif op_node.name() in self.dequantize_type: |
| 125 | + self._remove_fake_dequantize_op(graph, op_node) |
| 126 | + self._remove_unused_var_nodes(graph) |
| 127 | + return graph |
| 128 | + |
| 129 | + def _transform_to_conv_mkldnn(self, graph, op_node): |
| 130 | + weight_name = op_node.input("Filter")[0] |
| 131 | + output_name = op_node.output("Output")[0] |
| 132 | + # Convert int8 range weights to fp32 range weights |
| 133 | + weight = self._load_param(self._scope, weight_name) |
| 134 | + w_fp32 = np.divide( |
| 135 | + np.multiply(weight, 127), self.max_range[output_name]) |
| 136 | + w_fp32 = w_fp32.reshape(weight.shape) |
| 137 | + self._restore_var(weight_name, w_fp32) |
| 138 | + input_var_node = graph._find_node_by_name(op_node.inputs, |
| 139 | + op_node.input("Input")[0]) |
| 140 | + weight_var_node = graph._find_node_by_name(op_node.inputs, weight_name) |
| 141 | + |
| 142 | + # Set fake_dequantize_abs_max's output as new output of conv2d |
| 143 | + output_var_node = graph._find_node_by_name( |
| 144 | + graph.all_var_nodes(), self.conv_new_output[output_name]) |
| 145 | + attrs = { |
| 146 | + name: op_node.op().attr(name) |
| 147 | + for name in op_node.op().attr_names() |
| 148 | + } |
| 149 | + |
| 150 | + conv_op_node = graph.create_op_node( |
| 151 | + op_type='conv2d', |
| 152 | + attrs=attrs, |
| 153 | + inputs={'Input': input_var_node, |
| 154 | + 'Filter': weight_var_node}, |
| 155 | + outputs={'Output': output_var_node}) |
| 156 | + |
| 157 | + # Based on the QAT's scales to calculate the scales of MKL-DNN INT8 conv2d |
| 158 | + scale_in = self.s8_max / self.InScale[output_name] |
| 159 | + scale_w = [] |
| 160 | + scale_w.append(self.max_range[output_name] / self.s8_max) |
| 161 | + |
| 162 | + conv_op_node.set_attr("Scale_weights", scale_w) |
| 163 | + conv_op_node.set_attr("Scale_in", scale_in) |
| 164 | + conv_op_node.set_attr("Scale_out", 1.0) |
| 165 | + conv_op_node.set_attr("use_mkldnn", 1) |
| 166 | + conv_op_node.set_attr("force_fp32_output", 1) |
| 167 | + graph.link_to(input_var_node, conv_op_node) |
| 168 | + graph.link_to(weight_var_node, conv_op_node) |
| 169 | + graph.link_to(conv_op_node, output_var_node) |
| 170 | + graph.safe_remove_nodes(op_node) |
| 171 | + |
| 172 | + def _transform_to_quantize_mkldnn(self, graph, op_node): |
| 173 | + """ |
| 174 | + Transform fake_quantize_xx op to quantize mkldnn op in the graph. |
| 175 | + """ |
| 176 | + input_var_node = graph._find_node_by_name(op_node.inputs, |
| 177 | + op_node.input("X")[0]) |
| 178 | + output_var_node = graph._find_node_by_name(op_node.outputs, |
| 179 | + op_node.output("Out")[0]) |
| 180 | + if output_var_node.id() in self.mul_input_id: |
| 181 | + return |
| 182 | + else: |
| 183 | + scale_in = self.s8_max / self._load_param( |
| 184 | + self._scope, op_node.input("InScale")[0])[0] |
| 185 | + quant_op_node = graph.create_op_node( |
| 186 | + op_type='quantize', |
| 187 | + attrs={ |
| 188 | + 'data_format': 'MKLDNNLAYOUT', |
| 189 | + 'use_mkldnn': 1, |
| 190 | + 'Scale': scale_in, |
| 191 | + 'is_negative_input': 1 |
| 192 | + }, |
| 193 | + inputs={'Input': input_var_node}, |
| 194 | + outputs={'Output': output_var_node}) |
| 195 | + graph.link_to(input_var_node, quant_op_node) |
| 196 | + graph.link_to(quant_op_node, output_var_node) |
| 197 | + graph.safe_remove_nodes(op_node) |
| 198 | + |
| 199 | + def _remove_fake_dequantize_op(self, graph, op_node): |
| 200 | + input_var_node = graph._find_node_by_name(op_node.inputs, |
| 201 | + op_node.input("X")[0]) |
| 202 | + if input_var_node.id() in self.mul_output_id: |
| 203 | + return |
| 204 | + else: |
| 205 | + graph.safe_remove_nodes(op_node) |
| 206 | + |
| 207 | + def _load_param(self, scope, param_name): |
| 208 | + return np.array(scope.find_var(param_name).get_tensor()) |
| 209 | + |
| 210 | + def _restore_var(self, name, array): |
| 211 | + tensor = self._scope.find_var(name).get_tensor() |
| 212 | + tensor.set(array, self._place) |
| 213 | + |
| 214 | + def _remove_unused_var_nodes(self, graph): |
| 215 | + all_used_vars = set() |
| 216 | + ops = graph.all_op_nodes() |
| 217 | + for op_node in ops: |
| 218 | + for input_node in op_node.inputs: |
| 219 | + all_used_vars.add(input_node) |
| 220 | + for output_node in op_node.outputs: |
| 221 | + all_used_vars.add(output_node) |
| 222 | + |
| 223 | + all_used_vars = {n.node for n in all_used_vars} |
| 224 | + all_unused_vars = { |
| 225 | + n |
| 226 | + for n in filter(lambda node: node.node not in all_used_vars, |
| 227 | + graph.all_var_nodes()) |
| 228 | + } |
| 229 | + graph.safe_remove_nodes(all_unused_vars) |
0 commit comments