|
| 1 | +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import print_function |
| 16 | + |
| 17 | +import copy |
| 18 | +import unittest |
| 19 | +import numpy as np |
| 20 | +from op_test import OpTest, skip_check_grad_ci |
| 21 | + |
| 22 | + |
| 23 | +def rrelu_np(x: np.array, |
| 24 | + lower_bound: float=0.125, |
| 25 | + upper_bound: float=0.3333, |
| 26 | + is_test: bool=False): |
| 27 | + """ |
| 28 | +
|
| 29 | + """ |
| 30 | + x = x.astype(np.float32) |
| 31 | + if is_test: |
| 32 | + middle_value = (lower_bound + upper_bound) / 2.0 |
| 33 | + mask = copy.deepcopy(x) |
| 34 | + mask[x >= 0.0] = 1.0 |
| 35 | + mask[x < 0.0] = middle_value |
| 36 | + else: |
| 37 | + x_shape = x.shape |
| 38 | + x = x.reshape(-1) |
| 39 | + mask = copy.deepcopy(x) |
| 40 | + for i in range(x.shape[0]): |
| 41 | + if x[i].item() >= 0.0: |
| 42 | + mask[i] = 1.0 |
| 43 | + else: |
| 44 | + mask[i] = np.random.uniform(lower_bound, upper_bound) |
| 45 | + x = x.reshape(x_shape) |
| 46 | + mask = mask.reshape(x_shape) |
| 47 | + |
| 48 | + out = x * mask |
| 49 | + return out, mask |
| 50 | + |
| 51 | + |
| 52 | +class TestRReLUOp(OpTest): |
| 53 | + def setUp(self): |
| 54 | + self.op_type = "rrelu" |
| 55 | + X = np.random.uniform(low=-100, high=10, size=(32, )).astype("float32") |
| 56 | + lower_bound = 0.0 |
| 57 | + upper_bound = 0.5 |
| 58 | + fix_seed = True |
| 59 | + seed = 100 |
| 60 | + is_test = False |
| 61 | + self.inputs = {'X': X} |
| 62 | + self.attrs = { |
| 63 | + 'lower_bound': lower_bound, |
| 64 | + 'upper_bound': upper_bound, |
| 65 | + 'fix_seed': fix_seed, |
| 66 | + 'seed': seed, |
| 67 | + 'is_test': is_test |
| 68 | + } |
| 69 | + np.random.seed(seed) |
| 70 | + Out, Mask = rrelu_np( |
| 71 | + x=X, |
| 72 | + lower_bound=lower_bound, |
| 73 | + upper_bound=upper_bound, |
| 74 | + is_test=is_test) |
| 75 | + self.outputs = {'Out': Out, 'Mask': Mask} |
| 76 | + |
| 77 | + def test_check_output(self): |
| 78 | + self.check_output() |
| 79 | + |
| 80 | + def test_check_grad_normal(self): |
| 81 | + self.check_grad(['X'], 'Out') |
| 82 | + |
| 83 | + |
| 84 | +class TestRReLUOp2(TestRReLUOp): |
| 85 | + def setUp(self): |
| 86 | + self.op_type = "rrelu" |
| 87 | + X = np.random.uniform(low=-100, high=10, size=(8, 16)).astype("float32") |
| 88 | + lower_bound = 0.4 |
| 89 | + upper_bound = 0.99 |
| 90 | + fix_seed = True |
| 91 | + seed = 3 |
| 92 | + is_test = False |
| 93 | + self.inputs = {'X': X} |
| 94 | + self.attrs = { |
| 95 | + 'lower_bound': lower_bound, |
| 96 | + 'upper_bound': upper_bound, |
| 97 | + 'fix_seed': fix_seed, |
| 98 | + 'seed': seed, |
| 99 | + 'is_test': is_test |
| 100 | + } |
| 101 | + np.random.seed(seed) |
| 102 | + Out, Mask = rrelu_np( |
| 103 | + x=X, |
| 104 | + lower_bound=lower_bound, |
| 105 | + upper_bound=upper_bound, |
| 106 | + is_test=is_test) |
| 107 | + self.outputs = {'Out': Out, 'Mask': Mask} |
| 108 | + |
| 109 | + |
| 110 | +class TestRReLUOp3(TestRReLUOp): |
| 111 | + def setUp(self): |
| 112 | + self.op_type = "rrelu" |
| 113 | + X = np.random.uniform( |
| 114 | + low=-100, high=10, size=(8, 16, 32)).astype("float32") |
| 115 | + lower_bound = 0.5 |
| 116 | + upper_bound = 0.51 |
| 117 | + fix_seed = True |
| 118 | + seed = 5 |
| 119 | + is_test = False |
| 120 | + self.inputs = {'X': X} |
| 121 | + self.attrs = { |
| 122 | + 'lower_bound': lower_bound, |
| 123 | + 'upper_bound': upper_bound, |
| 124 | + 'fix_seed': fix_seed, |
| 125 | + 'seed': seed, |
| 126 | + 'is_test': is_test |
| 127 | + } |
| 128 | + np.random.seed(seed) |
| 129 | + Out, Mask = rrelu_np( |
| 130 | + x=X, |
| 131 | + lower_bound=lower_bound, |
| 132 | + upper_bound=upper_bound, |
| 133 | + is_test=is_test) |
| 134 | + self.outputs = {'Out': Out, 'Mask': Mask} |
| 135 | + |
| 136 | + |
| 137 | +@skip_check_grad_ci(reason="For inference, check_grad is not required.") |
| 138 | +class TestRReLUOp4(OpTest): |
| 139 | + def setUp(self): |
| 140 | + self.op_type = "rrelu" |
| 141 | + X = np.random.uniform(low=-100, high=10, size=(32, )).astype("float32") |
| 142 | + lower_bound = 0.0 |
| 143 | + upper_bound = 0.3 |
| 144 | + fix_seed = True |
| 145 | + seed = 11 |
| 146 | + is_test = True |
| 147 | + self.inputs = {'X': X} |
| 148 | + self.attrs = { |
| 149 | + 'lower_bound': lower_bound, |
| 150 | + 'upper_bound': upper_bound, |
| 151 | + 'fix_seed': fix_seed, |
| 152 | + 'seed': seed, |
| 153 | + 'is_test': is_test |
| 154 | + } |
| 155 | + Out, Mask = rrelu_np( |
| 156 | + x=X, |
| 157 | + lower_bound=lower_bound, |
| 158 | + upper_bound=upper_bound, |
| 159 | + is_test=is_test) |
| 160 | + self.outputs = {'Out': Out} |
| 161 | + |
| 162 | + def test_check_output(self): |
| 163 | + self.check_output() |
| 164 | + |
| 165 | + |
| 166 | +@skip_check_grad_ci(reason="For inference, check_grad is not required.") |
| 167 | +class TestRReLUOp5(OpTest): |
| 168 | + def setUp(self): |
| 169 | + self.op_type = "rrelu" |
| 170 | + X = np.random.uniform( |
| 171 | + low=-100, high=10, size=(32, 16, 8)).astype("float32") |
| 172 | + lower_bound = 0.0 |
| 173 | + upper_bound = 0.3 |
| 174 | + is_test = True |
| 175 | + self.inputs = {'X': X} |
| 176 | + self.attrs = { |
| 177 | + 'lower_bound': lower_bound, |
| 178 | + 'upper_bound': upper_bound, |
| 179 | + 'is_test': is_test |
| 180 | + } |
| 181 | + Out, Mask = rrelu_np( |
| 182 | + x=X, |
| 183 | + lower_bound=lower_bound, |
| 184 | + upper_bound=upper_bound, |
| 185 | + is_test=is_test) |
| 186 | + self.outputs = {'Out': Out} |
| 187 | + |
| 188 | + def test_check_output(self): |
| 189 | + self.check_output() |
| 190 | + |
| 191 | + |
| 192 | +class TestRReLUOpWithSeed(OpTest): |
| 193 | + def setUp(self): |
| 194 | + self.op_type = "rrelu" |
| 195 | + X = np.random.uniform( |
| 196 | + low=-100, high=10, size=(32, 16)).astype("float32") |
| 197 | + Seed = np.asarray([125], dtype="int32") |
| 198 | + lower_bound = 0.0 |
| 199 | + upper_bound = 0.3 |
| 200 | + is_test = False |
| 201 | + self.inputs = {'X': X, 'Seed': Seed} |
| 202 | + self.attrs = { |
| 203 | + 'lower_bound': lower_bound, |
| 204 | + 'upper_bound': upper_bound, |
| 205 | + 'is_test': is_test |
| 206 | + } |
| 207 | + np.random.seed(125) |
| 208 | + Out, Mask = rrelu_np( |
| 209 | + x=X, |
| 210 | + lower_bound=lower_bound, |
| 211 | + upper_bound=upper_bound, |
| 212 | + is_test=is_test) |
| 213 | + self.outputs = {'Out': Out, 'Mask': Mask} |
| 214 | + |
| 215 | + def test_check_output(self): |
| 216 | + self.check_output() |
| 217 | + |
| 218 | + def test_check_grad_normal(self): |
| 219 | + self.check_grad(['X'], 'Out', max_relative_error=0.05) |
| 220 | + |
| 221 | + |
| 222 | +if __name__ == "__main__": |
| 223 | + unittest.main() |
0 commit comments