-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathdlpack_tensor.cc
192 lines (164 loc) · 5.9 KB
/
dlpack_tensor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/dlpack_tensor.h"
#include "paddle/fluid/framework/data_type.h"
namespace paddle {
namespace framework {
namespace internal {
template <typename T>
static ::DLDataType GetDLDataTypeCode() {
::DLDataType dtype;
if (std::is_same<T, platform::complex<float>>::value ||
std::is_same<T, platform::complex<double>>::value) {
dtype.code = kDLComplex;
} else if (std::is_same<T, platform::bfloat16>::value) {
dtype.code = kDLBfloat;
} else if (std::is_same<T, platform::float16>::value ||
std::is_floating_point<T>::value) {
dtype.code = kDLFloat;
} else if (std::is_unsigned<T>::value) {
dtype.code = kDLUInt;
} else if (std::is_integral<T>::value) {
dtype.code = kDLInt;
} else {
PADDLE_THROW(platform::errors::Unavailable(
"Unsupported data type (%s), only supports float16, float, unsigned "
"int and int.",
platform::demangle(typeid(T).name())));
}
dtype.bits = 8 * sizeof(T);
dtype.lanes = 1;
return dtype;
}
static std::unordered_map<int, ::DLDataType> CreateDLDataTypeMap() {
static std::unordered_map<int, ::DLDataType> result;
#define REG_DL_DATA_TYPE(cpp_type, proto_type) \
result[static_cast<int>(proto_type)] = GetDLDataTypeCode<cpp_type>()
_ForEachDataType_(REG_DL_DATA_TYPE);
#undef REG_DL_DATA_TYPE
return result;
}
static DLDataType GetDLDataTypeFromTypeIndex(proto::VarType::Type type) {
static auto type_to_dtype_map = CreateDLDataTypeMap();
static auto type_to_dtype_map_end_it = type_to_dtype_map.end();
auto it = type_to_dtype_map.find(static_cast<int>(type));
PADDLE_ENFORCE_NE(it, type_to_dtype_map_end_it,
platform::errors::InvalidArgument(
"Unsupported data type (%s).", DataTypeToString(type)));
return it->second;
#undef REG_DL_DATA_TYPE
}
struct DLDeviceVisitor : public boost::static_visitor<::DLDevice> {
inline ::DLDevice operator()(const platform::CPUPlace &place) const {
::DLDevice device;
device.device_type = kDLCPU;
device.device_id = 0;
return device;
}
inline ::DLDevice operator()(const platform::IPUPlace &place) const {
PADDLE_THROW(
platform::errors::Unimplemented("platform::IPUPlace is not supported"));
}
inline ::DLDevice operator()(const platform::XPUPlace &place) const {
PADDLE_THROW(
platform::errors::Unimplemented("platform::XPUPlace is not supported"));
}
inline ::DLDevice operator()(const platform::NPUPlace &place) const {
PADDLE_THROW(
platform::errors::Unimplemented("platform::NPUPlace is not supported"));
}
inline ::DLDevice operator()(const platform::NPUPinnedPlace &place) const {
PADDLE_THROW(platform::errors::Unimplemented(
"platform::NPUPinnedPlace is not supported"));
}
inline ::DLDevice operator()(const platform::MLUPlace &place) const {
PADDLE_THROW(
platform::errors::Unimplemented("platform::MLUPlace is not supported"));
}
inline ::DLDevice operator()(const platform::CUDAPlace &place) const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
::DLDevice device;
device.device_type = kDLGPU;
device.device_id = place.device;
return device;
#else
PADDLE_THROW(platform::errors::Unavailable(
"platform::CUDAPlace is not supported in CPU only version."));
#endif
}
inline ::DLDevice operator()(const platform::CUDAPinnedPlace &place) const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
::DLDevice device;
device.device_type = kDLCPUPinned;
device.device_id = 0;
return device;
#else
PADDLE_THROW(platform::errors::Unavailable(
"platform::CUDAPinnedPlace is not supported in CPU only version."));
#endif
}
};
} // namespace internal
DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) {
// init data, data buffer
t_.data = const_cast<void *>(tensor.data());
// init device, DLDevice type with device_type and device_id
auto place = tensor.place();
t_.device = paddle::platform::VisitPlace(place, internal::DLDeviceVisitor());
// init dtype
t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type());
t_.dtype.lanes = lanes;
// init ndim, tensor rank
auto &dims = tensor.dims();
using DimType = decltype(t_.ndim); // int
t_.ndim = static_cast<DimType>(dims.size());
// init shape, tensor dims
t_.shape = shape_;
for (DimType i = 0; i < t_.ndim; ++i) {
t_.shape[i] = dims[i];
}
// init strides, nullptr means the tensor is compact
t_.strides = nullptr;
// init byte_offset
t_.byte_offset = 0;
}
::DLManagedTensor *DLPackTensor::ToDLManagedTensor() {
// init shape
auto shape = new int64_t[t_.ndim];
using DimType = decltype(t_.ndim); // int
for (DimType i = 0; i < t_.ndim; ++i) {
shape[i] = t_.shape[i];
}
t_.shape = shape;
// init strides
auto strides = new int64_t[t_.ndim];
for (DimType i = 0; i < t_.ndim; ++i) {
strides[i] = 1;
}
for (DimType i = t_.ndim - 2; i >= 0; --i) {
strides[i] = t_.shape[i + 1] * strides[i + 1];
}
t_.strides = strides;
auto tensor = new DLManagedTensor;
tensor->dl_tensor = t_;
tensor->deleter = [](DLManagedTensor *arg) {
delete[] arg->dl_tensor.shape;
delete[] arg->dl_tensor.strides;
delete arg;
};
tensor->manager_ctx = nullptr;
return tensor;
}
} // namespace framework
} // namespace paddle