-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathheter_pipeline_trainer.cc
338 lines (322 loc) · 12.7 KB
/
heter_pipeline_trainer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/service/heter_server.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
#include "paddle/phi/core/framework/trainer_desc.pb.h"
namespace paddle::framework {
class Variable;
using MiniScope = std::unordered_map<int, Scope*>;
using MicroScope =
std::unordered_map<int, std::shared_ptr<std::vector<Scope*>>>;
using TaskQueue =
std::unordered_map<int,
std::shared_ptr<::paddle::framework::BlockingQueue<
std::pair<std::string, int>>>>;
void HeterPipelineTrainer::ResetDataset(Dataset* dataset) {
#ifndef PADDLE_WITH_FLPS
if (pipeline_stage_ == 0) {
#endif
SetDataset(dataset);
const std::vector<paddle::framework::DataFeed*> readers =
dataset->GetReaders();
VLOG(3) << "readers num: " << readers.size();
// change thread num is not supported
PADDLE_ENFORCE_EQ(thread_num_,
readers.size(),
common::errors::InvalidArgument(
"change Dataset thread_num is not supported"));
int cnt = -1;
for (auto& worker_pair : workers_) {
cnt++;
auto device_worker = worker_pair.second;
auto this_worker =
std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
device_worker);
this_worker->SetDataFeed(readers[cnt]);
this_worker->SetReaderPlace(place_);
}
#ifndef PADDLE_WITH_FLPS
}
#endif
}
void HeterPipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
Dataset* dataset) {
trainer_desc_ = trainer_desc;
thread_num_ = trainer_desc.thread_num();
ParseDumpConfig(trainer_desc);
SetDebug(trainer_desc.debug());
const std::vector<paddle::framework::DataFeed*> readers =
dataset->GetReaders();
// change thread num to readers num
thread_num_ = readers.size();
VLOG(3) << "worker(readers) thread num: " << thread_num_;
const auto& heter_section_params = trainer_desc.heter_section_param();
num_pipeline_stages_ = heter_section_params.num_pipeline_stages();
pipeline_stage_ = heter_section_params.pipeline_stage();
num_microbatches_ = heter_section_params.num_microbatches();
VLOG(3) << "Number of microbatches per minibatch: " << num_microbatches_;
trainer_id_ = trainer_desc.trainer_id();
for (int i = 0; i < num_pipeline_stages_; ++i) {
auto trainer_num = trainer_desc.trainers(i);
trainers_.push_back(trainer_num);
}
int cpu_trainer_num = trainers_[0];
VLOG(4) << "trainer_id_: " << trainer_id_;
VLOG(4) << "cpu_trainer_num: " << cpu_trainer_num
<< " xpu_trainer_num: " << trainers_[1];
#ifdef PADDLE_WITH_FLPS
thread_num_ = 1;
#endif
if (pipeline_stage_ == 0) { // for cpu trainer
int cnt = -1;
int real_thread_id = trainer_id_;
for (int i = 0; i < thread_num_; i++) {
cnt++;
workers_[real_thread_id] = DeviceWorkerFactory::CreateDeviceWorker(
trainer_desc.device_worker_name());
auto this_worker =
std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
workers_[real_thread_id]);
this_worker->SetDebug(debug_);
this_worker->SetNeedDumpField(need_dump_field_);
this_worker->SetNeedDumpParam(need_dump_param_);
this_worker->SetDumpFieldVector(dump_fields_);
this_worker->SetDumpParamVector(dump_param_);
this_worker->InitRandomDumpConfig(trainer_desc);
this_worker->SetDeviceIndex(real_thread_id);
real_thread_id += cpu_trainer_num;
this_worker->SetDataFeed(readers[cnt]);
this_worker->SetMicrobatchNum(num_microbatches_);
this_worker->SetPipelineStageNum(num_pipeline_stages_);
this_worker->SetPipelineStage(pipeline_stage_);
}
} else {
// for heter_trainer
// heter trainer with thread_id == -1 is not for real training, just for run
// listen op
workers_[-1] = DeviceWorkerFactory::CreateDeviceWorker(
trainer_desc.device_worker_name());
auto this_worker =
std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
workers_[-1]);
#ifdef PADDLE_WITH_FLPS
this_worker->SetDebug(debug_);
this_worker->SetNeedDumpField(need_dump_field_);
this_worker->SetNeedDumpParam(need_dump_param_);
this_worker->SetDumpFieldVector(dump_fields_);
this_worker->SetDumpParamVector(dump_param_);
this_worker->InitRandomDumpConfig(trainer_desc);
this_worker->SetDataFeed(readers[0]);
#endif
this_worker->SetDeviceIndex(-1);
this_worker->SetMicrobatchNum(num_microbatches_);
this_worker->SetPipelineStageNum(num_pipeline_stages_);
this_worker->SetPipelineStage(pipeline_stage_);
}
}
void HeterPipelineTrainer::InitOtherEnv(const ProgramDesc& main_program) {
if (need_dump_field_) {
InitDumpEnv();
}
}
std::string HeterPipelineTrainer::GetDumpPath(int tid) {
return string::format_string("%s/part-%05d", dump_fields_path_.c_str(), tid);
}
void HeterPipelineTrainer::InitDumpEnv() {
queue_ = paddle::framework::MakeChannel<std::string>();
for (int i = 0; i < thread_num_; ++i) {
workers_[i]->SetChannelWriter(queue_.get());
}
dump_thread_num_ = 1;
for (int i = 0; i < dump_thread_num_; i++) {
dump_thread_.push_back(
std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
}
}
void HeterPipelineTrainer::InitTrainerEnv(const ProgramDesc& main_program,
const phi::Place& place) {
place_ = place;
PADDLE_ENFORCE_NOT_NULL(
root_scope_,
common::errors::InvalidArgument("root_scope_ can not be nullptr"));
// initialize mini_scopes & micro_scopes
mini_scopes_.reset(new MiniScope{});
micro_scopes_.reset(new MicroScope{});
task_queue_.reset(new TaskQueue{});
for (auto& worker_pair : workers_) {
auto worker_index = worker_pair.first;
auto device_worker = worker_pair.second;
VLOG(0) << "workers index in InitTrainerEnv: " << worker_index;
auto this_worker =
std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
device_worker);
this_worker->SetPlace(place);
this_worker->Initialize(trainer_desc_);
#ifdef PADDLE_WITH_FLPS
this_worker->SetReaderPlace(place);
#else
if (pipeline_stage_ == 0) {
this_worker->SetReaderPlace(place);
}
#endif
this_worker->SetRootScope(root_scope_);
// generate mini_batch scope for every worker
auto* minibatch_scope = &root_scope_->NewScope();
(*mini_scopes_)[worker_index] = minibatch_scope;
this_worker->SetMinibatchScope(minibatch_scope);
// after set micro num & mini batch scope
this_worker->CreateMicrobatchScopes();
(*micro_scopes_)[worker_index] = this_worker->GetMicrobatchScopes();
VLOG(4) << "worker_index: " << worker_index;
(*task_queue_)[worker_index] = this_worker->GetThreadQueue();
}
}
void HeterPipelineTrainer::Run() {
VLOG(3) << "Going to run HeterPipelineTrainer::Run()";
if (listen_ptr_ == nullptr) {
VLOG(3) << "listen_ptr_ is null";
for (auto& worker_pair : workers_) {
auto& device_worker = worker_pair.second;
auto worker_0 =
std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
device_worker);
listen_ptr_.reset(new std::thread(
std::bind(&HeterSectionWorker::RunListen, worker_0.get())));
break;
}
}
auto heter_server = paddle::distributed::HeterServer::GetInstance();
heter_server->WaitServerReady();
heter_server->SetMiniBatchScopes(mini_scopes_);
heter_server->SetMicroBatchScopes(micro_scopes_);
VLOG(4) << "heter_server SetTaskQueue";
heter_server->SetTaskQueue(task_queue_);
// main training logic
VLOG(3) << "pipeline_stage_ is " << pipeline_stage_;
if (pipeline_stage_ == 0) { // for cpu trainer
for (auto& worker_pair : workers_) {
VLOG(4) << "cpu worker index : " << worker_pair.first;
auto device_worker = worker_pair.second;
if (!debug_) {
threads_.push_back(
std::thread(&DeviceWorker::TrainFiles, device_worker.get()));
} else {
threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
device_worker.get()));
}
}
} else { // for heter worker
// start thread_worker with thread_id = -1
for (auto& worker_pair : workers_) {
VLOG(4) << "xpu worker index : " << worker_pair.first;
auto device_worker = worker_pair.second;
if (!debug_) {
threads_.push_back(
std::thread(&DeviceWorker::TrainFiles, device_worker.get()));
} else {
threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
device_worker.get()));
}
}
bool epoch_finish = false;
auto heter_server = paddle::distributed::HeterServer::GetInstance();
while (!epoch_finish) {
if (heter_server->IsStop()) {
epoch_finish = true;
continue;
}
// create new thread_worker
// size_t thread_num = (*micro_scopes_).size();
// size_t thread_num = (*task_queue_).size();
size_t thread_num = heter_server->GetThreadNum();
while (thread_num > threads_.size()) {
for (auto& worker_pair : (*micro_scopes_)) {
auto worker_index = worker_pair.first;
if (workers_.find(worker_index) != workers_.end()) continue;
workers_[worker_index] = DeviceWorkerFactory::CreateDeviceWorker(
trainer_desc_.device_worker_name());
auto this_worker =
std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
workers_[worker_index]);
this_worker->SetDebug(debug_);
this_worker->SetNeedDumpField(need_dump_field_);
this_worker->SetNeedDumpParam(need_dump_param_);
this_worker->SetDumpFieldVector(dump_fields_);
this_worker->SetDumpParamVector(dump_param_);
this_worker->InitRandomDumpConfig(trainer_desc_);
this_worker->SetDeviceIndex(worker_index);
this_worker->SetMicrobatchNum(num_microbatches_);
this_worker->SetPipelineStageNum(num_pipeline_stages_);
this_worker->SetPipelineStage(pipeline_stage_);
this_worker->SetPlace(place_);
#ifdef PADDLE_WITH_FLPS
this_worker->SetDataFeed(workers_[-1]->device_reader_);
this_worker->SetReaderPlace(place_);
#endif
this_worker->Initialize(trainer_desc_);
this_worker->SetRootScope(root_scope_);
// generate mini_batch scope for every worker
// auto* minibatch_scope = &root_scope_->NewScope();
auto* minibatch_scope = (*mini_scopes_)[worker_index];
// (*mini_scopes_)[worker_index] = minibatch_scope;
this_worker->SetMinibatchScope(minibatch_scope);
// after set micro num & mini batch scope
this_worker->SetMicrobatchScopes((*micro_scopes_)[worker_index]);
this_worker->CreateMicrobatchScopes();
// this_worker->SetMicrobatchScopes((*micro_scopes_)[worker_index]);
this_worker->SetThreadQueue((*task_queue_)[worker_index]);
if (!debug_) {
threads_.push_back(
std::thread(&DeviceWorker::TrainFiles, this_worker.get()));
} else {
threads_.push_back(std::thread(
&DeviceWorker::TrainFilesWithProfiler, this_worker.get()));
}
}
}
}
}
for (auto& th : threads_) {
th.join();
}
if (!threads_.empty()) {
threads_.clear();
}
VLOG(3) << "Epoch Training done";
}
void HeterPipelineTrainer::Finalize() {
VLOG(3) << "HeterPipelineTrainer Finalize";
auto heter_server = paddle::distributed::HeterServer::GetInstance();
heter_server->Stop();
if (listen_ptr_) {
(listen_ptr_.get())->join();
listen_ptr_.reset(nullptr);
}
if (need_dump_field_) {
FinalizeDumpEnv();
}
root_scope_->DropKids();
}
Scope* HeterPipelineTrainer::GetWorkerScope(int thread_id) {
if (workers_.find(thread_id) != workers_.end()) {
return workers_[thread_id]->GetThreadScope();
} else {
return nullptr;
}
}
} // namespace paddle::framework
#endif