|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 10, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from PIL import Image\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "import cv2" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 11, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "#pip install ImageHash (you need to do that in your Terminal)\n", |
| 21 | + "import imagehash\n", |
| 22 | + "#import scipy.spatial\n", |
| 23 | + "from scipy.spatial import distance" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 12, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "name": "stdout", |
| 33 | + "output_type": "stream", |
| 34 | + "text": [ |
| 35 | + "9a86372888939fbd ffe090a9c116dd32 e4eaabec9c919093\n" |
| 36 | + ] |
| 37 | + } |
| 38 | + ], |
| 39 | + "source": [ |
| 40 | + "hash1 = imagehash.phash(Image.open('car1.png'))\n", |
| 41 | + "hash2 = imagehash.phash(Image.open('car2.png'))\n", |
| 42 | + "hash3 = imagehash.phash(Image.open('car3.png'))\n", |
| 43 | + "print (hash1, hash2, hash3)" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": 13, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [ |
| 51 | + { |
| 52 | + "name": "stdout", |
| 53 | + "output_type": "stream", |
| 54 | + "text": [ |
| 55 | + "9a86372888939fbd ffe090a9c116dd32 e4eaabec9c919093\n" |
| 56 | + ] |
| 57 | + } |
| 58 | + ], |
| 59 | + "source": [ |
| 60 | + "hs1 = str(hash1)\n", |
| 61 | + "hs2 = str(hash2)\n", |
| 62 | + "hs3 = str(hash3)\n", |
| 63 | + "print (hs1, hs2, hs3)" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": 14, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# we are doing a string compare to find difference\n", |
| 73 | + "def hamming_distance(h1, h2):\n", |
| 74 | + " counter = 0\n", |
| 75 | + " for i in range(len(h1)):\n", |
| 76 | + " if h1[i] != h2[i]:\n", |
| 77 | + " counter += 1\n", |
| 78 | + " return counter" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "code", |
| 83 | + "execution_count": 15, |
| 84 | + "metadata": {}, |
| 85 | + "outputs": [ |
| 86 | + { |
| 87 | + "name": "stdout", |
| 88 | + "output_type": "stream", |
| 89 | + "text": [ |
| 90 | + "hs1-hs2 16\n", |
| 91 | + "hs1-hs3 14\n", |
| 92 | + "hs2-hs3 15\n", |
| 93 | + "hs2-hs2 0\n" |
| 94 | + ] |
| 95 | + } |
| 96 | + ], |
| 97 | + "source": [ |
| 98 | + "#print (hamming_distance(hash1,hash2)) - this needs to be commented out to avoid error: object of type 'ImageHash' has no len()\n", |
| 99 | + "# so hash value is converted to string first\n", |
| 100 | + "\n", |
| 101 | + "print (\"hs1-hs2\",hamming_distance(hs1,hs2))\n", |
| 102 | + "print (\"hs1-hs3\",hamming_distance(hs1,hs3))\n", |
| 103 | + "print (\"hs2-hs3\",hamming_distance(hs2,hs3))\n", |
| 104 | + "print (\"hs2-hs2\",hamming_distance(hs2,hs2))" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 16, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [ |
| 112 | + { |
| 113 | + "name": "stdout", |
| 114 | + "output_type": "stream", |
| 115 | + "text": [ |
| 116 | + "1.0\n" |
| 117 | + ] |
| 118 | + } |
| 119 | + ], |
| 120 | + "source": [ |
| 121 | + "#note the distance.hamming function from scipy.spatial always return 1\n", |
| 122 | + "print(distance.hamming(hash1, hash2))" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": 17, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [ |
| 130 | + { |
| 131 | + "name": "stdout", |
| 132 | + "output_type": "stream", |
| 133 | + "text": [ |
| 134 | + "1.0\n" |
| 135 | + ] |
| 136 | + } |
| 137 | + ], |
| 138 | + "source": [ |
| 139 | + "print(distance.hamming(hs1, hs2))" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "code", |
| 144 | + "execution_count": null, |
| 145 | + "metadata": {}, |
| 146 | + "outputs": [], |
| 147 | + "source": [] |
| 148 | + } |
| 149 | + ], |
| 150 | + "metadata": { |
| 151 | + "kernelspec": { |
| 152 | + "display_name": "Python 3", |
| 153 | + "language": "python", |
| 154 | + "name": "python3" |
| 155 | + }, |
| 156 | + "language_info": { |
| 157 | + "codemirror_mode": { |
| 158 | + "name": "ipython", |
| 159 | + "version": 3 |
| 160 | + }, |
| 161 | + "file_extension": ".py", |
| 162 | + "mimetype": "text/x-python", |
| 163 | + "name": "python", |
| 164 | + "nbconvert_exporter": "python", |
| 165 | + "pygments_lexer": "ipython3", |
| 166 | + "version": "3.7.3" |
| 167 | + } |
| 168 | + }, |
| 169 | + "nbformat": 4, |
| 170 | + "nbformat_minor": 2 |
| 171 | +} |
0 commit comments