forked from jeya-maria-jose/UNeXt-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
355 lines (293 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import argparse
import os
from collections import OrderedDict
from glob import glob
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import yaml
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose, OneOf
from sklearn.model_selection import train_test_split
from torch.optim import lr_scheduler
from tqdm import tqdm
from albumentations import RandomRotate90,Resize
import archs
import losses
from dataset import Dataset
from metrics import iou_score
from utils import AverageMeter, str2bool
from archs import UNext
ARCH_NAMES = archs.__all__
LOSS_NAMES = losses.__all__
LOSS_NAMES.append('BCEWithLogitsLoss')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', default=None,
help='model name: (default: arch+timestamp)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch_size', default=16, type=int,
metavar='N', help='mini-batch size (default: 16)')
# model
parser.add_argument('--arch', '-a', metavar='ARCH', default='UNext')
parser.add_argument('--deep_supervision', default=False, type=str2bool)
parser.add_argument('--input_channels', default=3, type=int,
help='input channels')
parser.add_argument('--num_classes', default=1, type=int,
help='number of classes')
parser.add_argument('--input_w', default=256, type=int,
help='image width')
parser.add_argument('--input_h', default=256, type=int,
help='image height')
# loss
parser.add_argument('--loss', default='BCEDiceLoss',
choices=LOSS_NAMES,
help='loss: ' +
' | '.join(LOSS_NAMES) +
' (default: BCEDiceLoss)')
# dataset
parser.add_argument('--dataset', default='isic',
help='dataset name')
parser.add_argument('--img_ext', default='.png',
help='image file extension')
parser.add_argument('--mask_ext', default='.png',
help='mask file extension')
# optimizer
parser.add_argument('--optimizer', default='Adam',
choices=['Adam', 'SGD'],
help='loss: ' +
' | '.join(['Adam', 'SGD']) +
' (default: Adam)')
parser.add_argument('--lr', '--learning_rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight_decay', default=1e-4, type=float,
help='weight decay')
parser.add_argument('--nesterov', default=False, type=str2bool,
help='nesterov')
# scheduler
parser.add_argument('--scheduler', default='CosineAnnealingLR',
choices=['CosineAnnealingLR', 'ReduceLROnPlateau', 'MultiStepLR', 'ConstantLR'])
parser.add_argument('--min_lr', default=1e-5, type=float,
help='minimum learning rate')
parser.add_argument('--factor', default=0.1, type=float)
parser.add_argument('--patience', default=2, type=int)
parser.add_argument('--milestones', default='1,2', type=str)
parser.add_argument('--gamma', default=2/3, type=float)
parser.add_argument('--early_stopping', default=-1, type=int,
metavar='N', help='early stopping (default: -1)')
parser.add_argument('--cfg', type=str, metavar="FILE", help='path to config file', )
parser.add_argument('--num_workers', default=4, type=int)
config = parser.parse_args()
return config
# args = parser.parse_args()
def train(config, train_loader, model, criterion, optimizer):
avg_meters = {'loss': AverageMeter(),
'iou': AverageMeter()}
model.train()
pbar = tqdm(total=len(train_loader))
for input, target, _ in train_loader:
input = input.cuda()
target = target.cuda()
# compute output
if config['deep_supervision']:
outputs = model(input)
loss = 0
for output in outputs:
loss += criterion(output, target)
loss /= len(outputs)
iou,dice = iou_score(outputs[-1], target)
else:
output = model(input)
loss = criterion(output, target)
iou,dice = iou_score(output, target)
# compute gradient and do optimizing step
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_meters['loss'].update(loss.item(), input.size(0))
avg_meters['iou'].update(iou, input.size(0))
postfix = OrderedDict([
('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
])
pbar.set_postfix(postfix)
pbar.update(1)
pbar.close()
return OrderedDict([('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg)])
def validate(config, val_loader, model, criterion):
avg_meters = {'loss': AverageMeter(),
'iou': AverageMeter(),
'dice': AverageMeter()}
# switch to evaluate mode
model.eval()
with torch.no_grad():
pbar = tqdm(total=len(val_loader))
for input, target, _ in val_loader:
input = input.cuda()
target = target.cuda()
# compute output
if config['deep_supervision']:
outputs = model(input)
loss = 0
for output in outputs:
loss += criterion(output, target)
loss /= len(outputs)
iou,dice = iou_score(outputs[-1], target)
else:
output = model(input)
loss = criterion(output, target)
iou,dice = iou_score(output, target)
avg_meters['loss'].update(loss.item(), input.size(0))
avg_meters['iou'].update(iou, input.size(0))
avg_meters['dice'].update(dice, input.size(0))
postfix = OrderedDict([
('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice', avg_meters['dice'].avg)
])
pbar.set_postfix(postfix)
pbar.update(1)
pbar.close()
return OrderedDict([('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice', avg_meters['dice'].avg)])
def main():
config = vars(parse_args())
if config['name'] is None:
if config['deep_supervision']:
config['name'] = '%s_%s_wDS' % (config['dataset'], config['arch'])
else:
config['name'] = '%s_%s_woDS' % (config['dataset'], config['arch'])
os.makedirs('models/%s' % config['name'], exist_ok=True)
print('-' * 20)
for key in config:
print('%s: %s' % (key, config[key]))
print('-' * 20)
with open('models/%s/config.yml' % config['name'], 'w') as f:
yaml.dump(config, f)
# define loss function (criterion)
if config['loss'] == 'BCEWithLogitsLoss':
criterion = nn.BCEWithLogitsLoss().cuda()
else:
criterion = losses.__dict__[config['loss']]().cuda()
cudnn.benchmark = True
# create model
model = archs.__dict__[config['arch']](config['num_classes'],
config['input_channels'],
config['deep_supervision'])
model = model.cuda()
params = filter(lambda p: p.requires_grad, model.parameters())
if config['optimizer'] == 'Adam':
optimizer = optim.Adam(
params, lr=config['lr'], weight_decay=config['weight_decay'])
elif config['optimizer'] == 'SGD':
optimizer = optim.SGD(params, lr=config['lr'], momentum=config['momentum'],
nesterov=config['nesterov'], weight_decay=config['weight_decay'])
else:
raise NotImplementedError
if config['scheduler'] == 'CosineAnnealingLR':
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer, T_max=config['epochs'], eta_min=config['min_lr'])
elif config['scheduler'] == 'ReduceLROnPlateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=config['factor'], patience=config['patience'],
verbose=1, min_lr=config['min_lr'])
elif config['scheduler'] == 'MultiStepLR':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[int(e) for e in config['milestones'].split(',')], gamma=config['gamma'])
elif config['scheduler'] == 'ConstantLR':
scheduler = None
else:
raise NotImplementedError
# Data loading code
img_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))
img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]
train_img_ids, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=41)
train_transform = Compose([
RandomRotate90(),
transforms.Flip(),
Resize(config['input_h'], config['input_w']),
transforms.Normalize(),
])
val_transform = Compose([
Resize(config['input_h'], config['input_w']),
transforms.Normalize(),
])
train_dataset = Dataset(
img_ids=train_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=train_transform)
val_dataset = Dataset(
img_ids=val_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=val_transform)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_workers'],
drop_last=True)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=False)
log = OrderedDict([
('epoch', []),
('lr', []),
('loss', []),
('iou', []),
('val_loss', []),
('val_iou', []),
('val_dice', []),
])
best_iou = 0
trigger = 0
for epoch in range(config['epochs']):
print('Epoch [%d/%d]' % (epoch, config['epochs']))
# train for one epoch
train_log = train(config, train_loader, model, criterion, optimizer)
# evaluate on validation set
val_log = validate(config, val_loader, model, criterion)
if config['scheduler'] == 'CosineAnnealingLR':
scheduler.step()
elif config['scheduler'] == 'ReduceLROnPlateau':
scheduler.step(val_log['loss'])
print('loss %.4f - iou %.4f - val_loss %.4f - val_iou %.4f'
% (train_log['loss'], train_log['iou'], val_log['loss'], val_log['iou']))
log['epoch'].append(epoch)
log['lr'].append(config['lr'])
log['loss'].append(train_log['loss'])
log['iou'].append(train_log['iou'])
log['val_loss'].append(val_log['loss'])
log['val_iou'].append(val_log['iou'])
log['val_dice'].append(val_log['dice'])
pd.DataFrame(log).to_csv('models/%s/log.csv' %
config['name'], index=False)
trigger += 1
if val_log['iou'] > best_iou:
torch.save(model.state_dict(), 'models/%s/model.pth' %
config['name'])
best_iou = val_log['iou']
print("=> saved best model")
trigger = 0
# early stopping
if config['early_stopping'] >= 0 and trigger >= config['early_stopping']:
print("=> early stopping")
break
torch.cuda.empty_cache()
if __name__ == '__main__':
main()