@@ -13,4 +13,66 @@ def binarysearch(arr,target):
13
13
14
14
arr = [int (x ) for x in input ("Enter the value: " ).split ("," )]
15
15
target = int (input ("enter the target value: " ))
16
- print (binarysearch (arr ,target ))
16
+ print (binarysearch (arr ,target ))
17
+
18
+
19
+ # Binary search
20
+
21
+ # Divide the search space into two halves by finding the middle index “mid”.
22
+ # Compare the middle element of the search space with the key.
23
+ # If the key is found at middle element, the process is terminated.
24
+ # If the key is not found at middle element, choose which half will be used as the next search space.
25
+ # If the key is smaller than the middle element, then the left side is used for next search.
26
+ # If the key is larger than the middle element, then the right side is used for next search.
27
+ # This process is continued until the key is found or the total search space is exhausted.
28
+
29
+ # Python3 code to implement iterative Binary search
30
+ # It returns location of x in given array arr
31
+
32
+
33
+ # def binarySearch(arr, l, r, x):
34
+ # while l<=r:
35
+ # mid=l+(r-1)//2
36
+ # if arr[mid]==x:
37
+ # return mid
38
+ # elif arr[mid]<x:
39
+ # l=mid+1
40
+ # else:
41
+ # r=mid-1
42
+ # return -1
43
+ # # If we reach here, then the element
44
+ # # was not present
45
+ # arr = [int(i) for i in input('enter array: ').split(",")]
46
+ # x = 10
47
+ # result = binarySearch(arr, 0, len(arr)-1, x)
48
+ # if result != -1:
49
+ # print("Element is present at index", result)
50
+ # else:
51
+ # print("Element is not present in array")
52
+
53
+
54
+ # Implementation of Recursive Binary Search Algorithm:
55
+
56
+ # def binary(arr,l,r,x):
57
+ # if r>=l:
58
+ # mid=l+(r-1)//2
59
+ # if arr[mid]==x:
60
+ # return mid
61
+ # elif arr[mid]>x:
62
+ # return binary(arr,l,mid-1,x)
63
+ # else:
64
+ # return binary(arr,mid+1,r,x)
65
+ # return -1
66
+ # arr = [int(i) for i in input('enter array: ').split(",")]
67
+ # x = 10
68
+ # result = binary(arr, 0, len(arr)-1, x)
69
+ # if result != -1:
70
+ # print("Element is present at index", result)
71
+ # else:
72
+ # print("Element is not present in array")
73
+
74
+ # Time Complexity:
75
+ # Best Case: O(1)
76
+ # Average Case: O(log N)
77
+ # Worst Case: O(log N)
78
+ # Auxiliary Space: O(1), If the recursive call stack is considered then the auxiliary space will be O(logN).
0 commit comments