-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathADM1_MTK_Dynamic.jl
458 lines (458 loc) · 28.1 KB
/
ADM1_MTK_Dynamic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#--ANAEROBIC DIGESTION ModelingToolkit Model----------------------------------------------------------------
#--Samuel Degnan-Morgenstern ----------------------------------------------------------------------------------
#--06/30/2022--------------------------------------------------------------------------------------------------
#--PI: Dr. Matthew Stuber--------------------------------------------------------------------------------------
#--Based on ADM1-----------------------------------------------------------------------------------------------
#--Full Model details available in Rosen 2006: "Aspects on ADM1 implementation within the BSM2 framework"------
#--ModelingToolkit version v8.15.1, DifferentialEquations v7.1.0, Symbolics v4.8.3----------------------------
#--------------------------------------------------------------------------------------------------------------
#Import Packages
using DifferentialEquations,Plots,LinearAlgebra,ModelingToolkit,IfElse
using DelimitedFiles
using Symbolics:@register_symbolic,scalarize
#--------------------------------------------------------------------------------------
#SET UP INFLUENT DATA STREAMS
#Specify relevant time range for influent data
t_r=0.0:1/96:280.0 # Units of days, sampled every 15 minutes
#Import and divide digester influent data - taken from PyADM1 implementation [2]
in_dat_full=readdlm("digester_influent.csv",',',Float64)';
in_dat =in_dat_full[2:end-1,:];
q_dat=in_dat_full[end,:];
#Create 0th order interpolation functions and register with symbolics (In tests cubic spline interpolation was computationally prohibitive)
#All functions return values with units of (kgCOD·m–3)
function S_su_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[1,cdat]
end; @register_symbolic S_su_in_itp(time)
function S_aa_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[2,cdat]
end; @register_symbolic S_aa_in_itp(time)
function S_fa_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[3,cdat]
end; @register_symbolic S_fa_in_itp(time)
function S_va_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[4,cdat]
end; @register_symbolic S_va_in_itp(time)
function S_bu_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[5,cdat]
end; @register_symbolic S_bu_in_itp(time)
function S_pro_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[6,cdat]
end; @register_symbolic S_pro_in_itp(time)
function S_ac_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[7,cdat]
end; @register_symbolic S_ac_in_itp(time)
function S_h2_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[8,cdat]
end; @register_symbolic S_h2_in_itp(time)
function S_ch4_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[9,cdat]
end; @register_symbolic S_ch4_in_itp(time)
function S_IC_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[10,cdat]
end; @register_symbolic S_IC_in_itp(time)
function S_IN_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[11,cdat]
end; @register_symbolic S_IN_in_itp(time)
function S_I_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[12,cdat]
end; @register_symbolic S_I_in_itp(time)
function X_c_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[13,cdat]
end; @register_symbolic X_c_in_itp(time)
function X_ch_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[14,cdat]
end; @register_symbolic X_ch_in_itp(time)
function X_pr_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[15,cdat]
end; @register_symbolic X_pr_in_itp(time)
function X_li_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[16,cdat]
end; @register_symbolic X_li_in_itp(time)
function X_su_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[17,cdat]
end; @register_symbolic X_su_in_itp(time)
function X_aa_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[18,cdat]
end; @register_symbolic X_aa_in_itp(time)
function X_fa_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[19,cdat]
end; @register_symbolic X_fa_in_itp(time)
function X_c4_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[20,cdat]
end; @register_symbolic X_c4_in_itp(time)
function X_pro_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[21,cdat]
end; @register_symbolic X_pro_in_itp(time)
function X_ac_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[22,cdat]
end; @register_symbolic X_ac_in_itp(time)
function X_h2_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[23,cdat]
end; @register_symbolic X_h2_in_itp(time)
function X_I_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[24,cdat]
end; @register_symbolic X_I_in_itp(time)
function S_cat_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[25,cdat]
end; @register_symbolic S_cat_in_itp(time)
function S_an_in_itp(time)
true_time=round(Int,time/(1/96))+1; cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time)); return in_dat[26,cdat]
end; @register_symbolic S_an_in_itp(time)
function q_itp(time)
true_time=round(Int,time/(1/96))+1;
cdat=IfElse.ifelse(true_time<1,1,IfElse.ifelse(true_time>26881,26881,true_time))
return q_dat[cdat]
end;
@register_symbolic q_itp(time)
#--------------------------------------------------------------------------------------
#Define and register hill function used in calculating inhibition factors
function calc_I_pH_hill_s(n,S_H_plus,pH_LL,pH_UL)
K_pH = 10^-((pH_LL + pH_UL)/2)
return K_pH^n/(S_H_plus^n + K_pH^n)
end
@register_symbolic calc_I_pH_hill_s(n,S_H_plus,pH_LL,pH_UL)
#--------------------------------------------------------------------------------------
#Define Operating Parameters
@parameters V_liq, V_gas,T_op
#Define Physical Conditions
@parameters P_atm, R, p_gas_h2o
#Define Carbon Stoichiometry Parameters
@parameters C_xc,C_sI,C_ch,C_pr,C_li,C_xI,C_su,C_aa,C_fa,C_bu,C_pro,C_ac,C_bac,C_va,C_ch4
#Define yields of product on substrate
@parameters f_sI_xc,f_xI_xc,f_ch_xc,f_pr_xc,f_li_xc,f_fa_li,f_h2_su,f_bu_su,f_pro_su,f_ac_su,f_h2_aa,f_va_aa,f_bu_aa,f_pro_aa,f_ac_aa
#Define Nitrogen Stoichiometry Parameters
@parameters N_xc,N_I,N_aa,N_bac
#Define yields of biomass on substrate
@parameters Y_su,Y_aa,Y_fa,Y_c4,Y_pro,Y_ac,Y_h2
#Define kinetic parameters
@parameters k_dis,k_hyd_ch,k_hyd_pr,k_hyd_li,k_dec_all,k_m_su,k_m_aa,k_m_fa,k_m_c4,k_m_pro,k_m_ac,k_m_h2,k_p,k_La
@parameters K_S_IN,K_S_su,K_S_aa,K_S_fa,K_I_H2_fa,K_S_c4,K_I_H2_c4,K_S_pro,K_I_H2_pro,K_S_ac,K_I_NH3,K_S_h2,K_W,K_a_va,K_a_bu,K_a_pro,K_a_ac,K_a_co2,K_a_IN,K_H_co2,K_H_ch4,K_H_h2
#Define pH limits
@parameters pH_UL_aa,pH_LL_aa,pH_UL_ac,pH_LL_ac,pH_UL_h2,pH_LL_h2
#--------------------------------------------------------------------------------------
#Define state variables (all functions of time)
@variables t, S_su(t),S_aa(t),S_fa(t),S_va(t),S_bu(t),S_pro(t),S_ac(t),S_h2(t),
S_ch4(t),S_IC(t),S_IN(t),S_I(t),X_c(t),X_ch(t),X_pr(t),X_li(t),
X_su(t),X_aa(t),X_fa(t),X_c4(t),X_pro(t),X_ac(t),X_h2(t),X_I(t),
S_cat(t),S_an(t),S_H_plus(t),S_gas_h2(t),S_gas_ch4(t),S_gas_co2(t)
#Define auxiliary variables
@variables p_gas_h2(t), p_gas_ch4(t), p_gas_co2(t), P_gas(t), q_gas(t), s_va_minus(t), s_bu_minus(t), s_pro_minus(t), s_ac_minus(t), s_hco3_minus(t), s_nh3(t), s_nh4_plus(t),
I_pH_aa(t),I_pH_ac(t),I_pH_h2(t),I_IN_lim(t),I_h2_fa(t),I_h2_c4(t),I_h2_pro(t),I_nh3(t),I_5_6(t),I_7(t),I_8_9(t),I_10(t),I_11(t),I_12(t),subsum(t),pH(t)
@variables s_1(t),s_2(t),s_3(t),s_4(t),s_5(t),s_6(t),s_7(t),s_8(t),s_9(t),s_10(t),s_11(t),s_12(t),s_13(t)
@variables ρ_bc_1(t),ρ_bc_2(t),ρ_bc_3(t),ρ_bc_4(t),ρ_bc_5(t),ρ_bc_6(t),ρ_bc_7(t),ρ_bc_8(t),ρ_bc_9(t),ρ_bc_10(t),
ρ_bc_11(t),ρ_bc_12(t),ρ_bc_13(t),ρ_bc_14(t),ρ_bc_15(t),ρ_bc_16(t),ρ_bc_17(t),ρ_bc_18(t),ρ_bc_19(t)
@variables ρ_T_1(t),ρ_T_2(t),ρ_T_3(t)
@variables reac_1(t),reac_2(t),reac_3(t),reac_4(t),reac_5(t),reac_6(t),reac_7(t),reac_8(t),reac_9(t),reac_10(t), reac_11(t),reac_12(t),
reac_13(t),reac_14(t),reac_15(t),reac_16(t),reac_17(t),reac_18(t),reac_19(t),reac_20(t),reac_21(t),reac_22(t),reac_23(t),reac_24(t)
#Define Influent Variables
@variables S_su_in(t),S_aa_in(t),S_fa_in(t),S_va_in(t),S_bu_in(t),S_pro_in(t),S_ac_in(t),S_h2_in(t),S_ch4_in(t),S_IC_in(t),S_IN_in(t),S_I_in(t),
X_c_in(t),X_ch_in(t),X_pr_in(t),X_li_in(t),X_su_in(t),X_aa_in(t),X_fa_in(t),X_c4_in(t),X_pro_in(t),X_ac_in(t),X_h2_in(t),X_I_in(t),S_cat_in(t),S_an_in(t)
@variables q(t)
#Register differential with respect to time t
D = Differential(t)
#--------------------------------------------------------------------------------------
#Function to create instance of ADM1 Model
function ADM1_factory(;name)
#Define Operating Parameters
@parameters V_liq, V_gas,T_op
#Define Physical Conditions
@parameters P_atm, R, p_gas_h2o
#Define Carbon Stoichiometry Parameters
@parameters C_xc,C_sI,C_ch,C_pr,C_li,C_xI,C_su,C_aa,C_fa,C_bu,C_pro,C_ac,C_bac,C_va,C_ch4
#Define yields of product on substrate
@parameters f_sI_xc,f_xI_xc,f_ch_xc,f_pr_xc,f_li_xc,f_fa_li,f_h2_su,f_bu_su,f_pro_su,f_ac_su,f_h2_aa,f_va_aa,f_bu_aa,f_pro_aa,f_ac_aa
#Define Nitrogen Stoichiometry Parameters
@parameters N_xc,N_I,N_aa,N_bac
#Define yields of biomass on substrate
@parameters Y_su,Y_aa,Y_fa,Y_c4,Y_pro,Y_ac,Y_h2
#Define kinetic parameters
@parameters k_dis,k_hyd_ch,k_hyd_pr,k_hyd_li,k_dec_all,k_m_su,k_m_aa,k_m_fa,k_m_c4,k_m_pro,k_m_ac,k_m_h2,k_p,k_La
@parameters K_S_IN,K_S_su,K_S_aa,K_S_fa,K_I_H2_fa,K_S_c4,K_I_H2_c4,K_S_pro,K_I_H2_pro,K_S_ac,K_I_NH3,K_S_h2,K_W,K_a_va,K_a_bu,K_a_pro,K_a_ac,K_a_co2,K_a_IN,K_H_co2,K_H_ch4,K_H_h2
#Define pH limits
@parameters pH_UL_aa,pH_LL_aa,pH_UL_ac,pH_LL_ac,pH_UL_h2,pH_LL_h2
#--------------------------------------------------------------------------------------
#Define state variables (all functions of time)
@variables t, S_su(t),S_aa(t),S_fa(t),S_va(t),S_bu(t),S_pro(t),S_ac(t),S_h2(t),
S_ch4(t),S_IC(t),S_IN(t),S_I(t),X_c(t),X_ch(t),X_pr(t),X_li(t),
X_su(t),X_aa(t),X_fa(t),X_c4(t),X_pro(t),X_ac(t),X_h2(t),X_I(t),
S_cat(t),S_an(t),S_H_plus(t),S_gas_h2(t),S_gas_ch4(t),S_gas_co2(t)
#Define auxiliary variables
@variables p_gas_h2(t), p_gas_ch4(t), p_gas_co2(t), P_gas(t), q_gas(t), s_va_minus(t), s_bu_minus(t), s_pro_minus(t), s_ac_minus(t), s_hco3_minus(t), s_nh3(t), s_nh4_plus(t),
I_pH_aa(t),I_pH_ac(t),I_pH_h2(t),I_IN_lim(t),I_h2_fa(t),I_h2_c4(t),I_h2_pro(t),I_nh3(t),I_5_6(t),I_7(t),I_8_9(t),I_10(t),I_11(t),I_12(t),subsum(t),pH(t)
@variables s_1(t),s_2(t),s_3(t),s_4(t),s_5(t),s_6(t),s_7(t),s_8(t),s_9(t),s_10(t),s_11(t),s_12(t),s_13(t)
@variables ρ_bc_1(t),ρ_bc_2(t),ρ_bc_3(t),ρ_bc_4(t),ρ_bc_5(t),ρ_bc_6(t),ρ_bc_7(t),ρ_bc_8(t),ρ_bc_9(t),ρ_bc_10(t),
ρ_bc_11(t),ρ_bc_12(t),ρ_bc_13(t),ρ_bc_14(t),ρ_bc_15(t),ρ_bc_16(t),ρ_bc_17(t),ρ_bc_18(t),ρ_bc_19(t)
@variables ρ_T_1(t),ρ_T_2(t),ρ_T_3(t)
@variables reac_1(t),reac_2(t),reac_3(t),reac_4(t),reac_5(t),reac_6(t),reac_7(t),reac_8(t),reac_9(t),reac_10(t), reac_11(t),reac_12(t),
reac_13(t),reac_14(t),reac_15(t),reac_16(t),reac_17(t),reac_18(t),reac_19(t),reac_20(t),reac_21(t),reac_22(t),reac_23(t),reac_24(t)
#Define Influent Variables
@variables S_su_in(t),S_aa_in(t),S_fa_in(t),S_va_in(t),S_bu_in(t),S_pro_in(t),S_ac_in(t),S_h2_in(t),S_ch4_in(t),S_IC_in(t),S_IN_in(t),S_I_in(t),
X_c_in(t),X_ch_in(t),X_pr_in(t),X_li_in(t),X_su_in(t),X_aa_in(t),X_fa_in(t),X_c4_in(t),X_pro_in(t),X_ac_in(t),X_h2_in(t),X_I_in(t),S_cat_in(t),S_an_in(t)
@variables q(t)
#Register differential with respect to time t
D = Differential(t)
#Create ADM1 system of equations
eqs = [
#Set up influent conditions
S_su_in ~ S_su_in_itp(t),
S_aa_in ~ S_aa_in_itp(t),
S_fa_in ~ S_fa_in_itp(t),
S_va_in ~ S_va_in_itp(t),
S_bu_in ~ S_bu_in_itp(t),
S_pro_in ~ S_pro_in_itp(t),
S_ac_in ~ S_ac_in_itp(t),
S_h2_in ~ S_h2_in_itp(t),
S_ch4_in ~ S_ch4_in_itp(t),
S_IC_in ~ S_IC_in_itp(t),
S_IN_in ~ S_IN_in_itp(t),
S_I_in ~ S_I_in_itp(t),
X_c_in ~ X_c_in_itp(t),
X_ch_in ~ X_ch_in_itp(t),
X_pr_in ~ X_pr_in_itp(t),
X_li_in ~ X_li_in_itp(t),
X_su_in ~ X_su_in_itp(t),
X_aa_in ~ X_aa_in_itp(t),
X_fa_in ~ X_fa_in_itp(t),
X_c4_in ~ X_c4_in_itp(t),
X_pro_in ~ X_pro_in_itp(t),
X_ac_in ~ X_ac_in_itp(t),
X_h2_in ~ X_h2_in_itp(t),
X_I_in ~ X_I_in_itp(t),
S_cat_in ~ S_cat_in_itp(t),
S_an_in ~ S_an_in_itp(t),
q ~ q_itp(t),
pH ~ -log10(S_H_plus),
#Set up auxiliary gas phase variables
p_gas_h2 ~ S_gas_h2*R*T_op/16, #partial pressure of h2 (bar)
p_gas_ch4 ~ S_gas_ch4*R*T_op/64, #partial pressure of methane (bar)
p_gas_co2 ~ S_gas_co2*R*T_op, # partial pressure of co2 (bar)
P_gas ~ p_gas_h2 + p_gas_ch4 + p_gas_co2 + p_gas_h2o, #total gas pressure (bar)
q_gas ~ k_p*(P_gas - P_atm), #gas volumetric flow rate
#Define ion substates
s_va_minus ~ K_a_va*S_va/(K_a_va+S_H_plus), #valerate ion
s_bu_minus ~ K_a_bu*S_bu/(K_a_bu+S_H_plus), #butyrate ion
s_pro_minus ~ K_a_pro*S_pro/(K_a_pro+S_H_plus), #propionate ion
s_ac_minus ~ K_a_ac*S_ac/(K_a_ac+S_H_plus), #acetate ion
s_hco3_minus ~ K_a_co2*S_IC/(K_a_co2+S_H_plus), #carbonate ion
s_nh3 ~ K_a_IN*S_IN/(K_a_IN+S_H_plus), #ammonia
s_nh4_plus ~ S_IN - s_nh3,#ammonium
I_pH_aa ~ calc_I_pH_hill_s(3/(pH_UL_aa-pH_LL_aa),S_H_plus,pH_LL_aa,pH_UL_aa), #amino acid inhibition
I_pH_ac ~ calc_I_pH_hill_s(3/(pH_UL_ac-pH_LL_ac),S_H_plus,pH_LL_ac,pH_UL_ac), #acetate inhibition
I_pH_h2 ~ calc_I_pH_hill_s(3/(pH_UL_h2-pH_LL_h2),S_H_plus,pH_LL_h2,pH_UL_h2), #hydrogen inhibition
I_IN_lim ~ 1.0/(1.0+K_S_IN/S_IN), #Inorganic nitrogen inhibition
I_h2_fa ~ 1.0/(1.0+S_h2/K_I_H2_fa),#hyrogen fatty acid inhibition
I_h2_c4 ~ 1.0/(1.0+S_h2/K_I_H2_c4),#hydrogen c4 inhibition
I_h2_pro ~ 1.0/(1.0+S_h2/K_I_H2_pro), #hydrogen propionate inhibiton
I_nh3 ~ 1.0/(1.0+s_nh3/K_I_NH3), #ammonia inhibition
I_5_6 ~ I_pH_aa*I_IN_lim, #inhibition for processes 5 & 6
I_7 ~ I_pH_aa*I_IN_lim*I_h2_fa, #inhibition for process 7
I_8_9 ~ I_pH_aa*I_IN_lim*I_h2_c4, #inhibition for processes 5 & 6
I_10 ~ I_pH_aa*I_IN_lim*I_h2_pro, #inhibition for process 10
I_11 ~ I_pH_ac*I_IN_lim*I_nh3, #inhibition for process 11
I_12 ~ I_pH_h2*I_IN_lim, #inhibition for process 12
#Intermediate states for process 10
s_1 ~ -C_xc+f_sI_xc*C_sI+f_ch_xc*C_ch+f_pr_xc*C_pr+f_li_xc*C_li+f_xI_xc*C_xI,
s_2 ~ -C_ch+C_su,
s_3 ~ -C_pr+C_aa,
s_4 ~ -C_li+(1-f_fa_li)*C_su+f_fa_li*C_fa,
s_5 ~ -C_su+(1-Y_su)*(f_bu_su*C_bu+f_pro_su*C_pro + f_ac_su*C_ac) + Y_su*C_bac,
s_6 ~ -C_aa+(1-Y_aa)*(f_va_aa*C_va+f_bu_aa*C_bu+f_pro_aa*C_pro + f_ac_aa*C_ac) + Y_aa*C_bac,
s_7 ~ -C_fa+(1-Y_fa)*.7*C_ac+Y_fa*C_bac,
s_8 ~ -C_va+(1-Y_c4)*.54*C_pro+(1-Y_c4)*.31*C_ac+Y_c4*C_bac,
s_9 ~ -C_bu+(1-Y_c4)*.8*C_ac+Y_c4*C_bac,
s_10 ~ -C_pro+(1-Y_pro)*.57*C_ac+Y_pro*C_bac,
s_11 ~ -C_ac+(1-Y_ac)*C_ch4+Y_ac*C_bac,
s_12 ~ (1-Y_h2)*C_ch4+Y_h2*C_bac,
s_13 ~ -C_bac+C_xc,
#Biochemical process rate terms
ρ_bc_1 ~ k_dis*X_c,
ρ_bc_2 ~ k_hyd_ch*X_ch,
ρ_bc_3 ~ k_hyd_pr*X_pr,
ρ_bc_4 ~ k_hyd_li*X_li,
ρ_bc_5 ~ k_m_su*S_su*X_su*I_5_6/(K_S_su+S_su),
ρ_bc_6 ~ k_m_aa*S_aa*X_aa*I_5_6/(K_S_aa+S_aa),
ρ_bc_7 ~ k_m_fa*S_fa*X_fa*I_7/(K_S_fa+S_fa),
ρ_bc_8 ~ k_m_c4*(S_va/(K_S_c4+S_va))*X_c4*(S_va/(S_bu+S_va+1e-6))*I_8_9,
ρ_bc_9 ~ k_m_c4*(S_bu/(K_S_c4+S_bu))*X_c4*(S_bu/(S_va+S_bu+1e-6))*I_8_9,
ρ_bc_10 ~ k_m_pro*(S_pro/(K_S_pro+S_pro))*X_pro*I_10,
ρ_bc_11 ~ k_m_ac*(S_ac/(K_S_ac+S_ac))*X_ac*I_11,
ρ_bc_12 ~ k_m_h2*(S_h2/(K_S_h2+S_h2))*X_h2*I_12,
ρ_bc_13 ~ k_dec_all*X_su,
ρ_bc_14 ~ k_dec_all*X_aa,
ρ_bc_15 ~ k_dec_all*X_fa,
ρ_bc_16 ~ k_dec_all*X_c4,
ρ_bc_17 ~ k_dec_all*X_pro,
ρ_bc_18 ~ k_dec_all*X_ac,
ρ_bc_19 ~ k_dec_all*X_h2,
subsum ~ ρ_bc_13 + ρ_bc_14 + ρ_bc_15 + ρ_bc_16 + ρ_bc_17 + ρ_bc_18 + ρ_bc_19,
#Gas Transfer process rate terms
ρ_T_1 ~ k_La*(S_h2-16*K_H_h2*p_gas_h2),
ρ_T_2 ~ k_La*(S_ch4-64*K_H_ch4*p_gas_ch4),
ρ_T_3 ~ k_La*((S_IC-s_hco3_minus)-K_H_co2*p_gas_co2),
#Reaction terms
reac_1 ~ ρ_bc_2+(1-f_fa_li)*ρ_bc_4-ρ_bc_5,
reac_2 ~ ρ_bc_3 - ρ_bc_6,
reac_3 ~ f_fa_li*ρ_bc_4 - ρ_bc_7,
reac_4 ~ (1-Y_aa)*f_va_aa*ρ_bc_6-ρ_bc_8,
reac_5 ~ (1-Y_su)*f_bu_su*ρ_bc_5 + (1-Y_aa)*f_bu_aa*ρ_bc_6-ρ_bc_9,
reac_6 ~ (1-Y_su)*f_pro_su*ρ_bc_5 + (1-Y_aa)*f_pro_aa*ρ_bc_6+(1-Y_c4)*.54*ρ_bc_8-ρ_bc_10,
reac_7 ~ (1-Y_su)*f_ac_su*ρ_bc_5 + (1-Y_aa)*f_ac_aa*ρ_bc_6+(1-Y_fa)*.7*ρ_bc_7+(1-Y_c4)*.31*ρ_bc_8+(1-Y_c4)*.8*ρ_bc_9+(1-Y_pro)*.57*ρ_bc_10-ρ_bc_11,
reac_8 ~ (1-Y_su)*f_h2_su*ρ_bc_5 + (1-Y_aa)*f_h2_aa*ρ_bc_6+(1-Y_fa)*.3*ρ_bc_7+(1-Y_c4)*.15*ρ_bc_8+(1-Y_c4)*.2*ρ_bc_9+(1-Y_pro)*.43*ρ_bc_10-ρ_bc_12-ρ_T_1,
reac_9 ~ (1-Y_ac)*ρ_bc_11+(1-Y_h2)*ρ_bc_12-ρ_T_2,
reac_10 ~ -(s_1*ρ_bc_1 + s_2*ρ_bc_2 + s_3*ρ_bc_3 + s_4*ρ_bc_4 + s_5*ρ_bc_5 + s_6*ρ_bc_6 + s_7*ρ_bc_7 + s_8*ρ_bc_8 + s_9*ρ_bc_9 + s_10*ρ_bc_10 + s_11*ρ_bc_11 + s_12*ρ_bc_12)-s_13*subsum-ρ_T_3,
reac_11 ~ -Y_su*N_bac*ρ_bc_5+(N_aa-Y_aa*N_bac)*ρ_bc_6-Y_fa*N_bac*ρ_bc_7-Y_c4*N_bac*ρ_bc_8-Y_c4*N_bac*ρ_bc_9-Y_pro*N_bac*ρ_bc_10-Y_ac*N_bac*ρ_bc_11-Y_h2*N_bac*ρ_bc_12+(N_bac-N_xc)*subsum+(N_xc-f_xI_xc*N_I-f_sI_xc*N_I-f_pr_xc*N_aa)*ρ_bc_1,
reac_12 ~ f_sI_xc*ρ_bc_1,
reac_13 ~ -ρ_bc_1 + subsum,
reac_14 ~ f_ch_xc*ρ_bc_1 - ρ_bc_2,
reac_15 ~ f_pr_xc*ρ_bc_1 - ρ_bc_3,
reac_16 ~ f_li_xc*ρ_bc_1 - ρ_bc_4,
reac_17 ~ Y_su*ρ_bc_5- ρ_bc_13,
reac_18 ~ Y_aa*ρ_bc_6- ρ_bc_14,
reac_19 ~ Y_fa*ρ_bc_7- ρ_bc_15,
reac_20 ~ Y_c4*ρ_bc_8+Y_c4*ρ_bc_9-ρ_bc_16,
reac_21 ~ Y_pro*ρ_bc_10- ρ_bc_17,
reac_22 ~ Y_ac*ρ_bc_11- ρ_bc_18,
reac_23 ~ Y_h2*ρ_bc_12- ρ_bc_19,
reac_24 ~ f_xI_xc*ρ_bc_1,
#ODE / Algebraic state terms (main model)
D(S_su) ~ (q/V_liq)*(S_su_in - S_su) + reac_1, #Monosaccharides (kgCOD·m–3)
D(S_aa) ~ (q/V_liq)*(S_aa_in - S_aa) + reac_2, #Amino acids (kgCOD·m–3)
D(S_fa) ~ (q/V_liq)*(S_fa_in - S_fa) + reac_3, #Long chain fatty acids (LCFA) (kgCOD·m–3)
D(S_va) ~ (q/V_liq)*(S_va_in - S_va) + reac_4, #Total valerate (kgCOD·m–3)
D(S_bu) ~ (q/V_liq)*(S_bu_in - S_bu) + reac_5, #Total butyrate (kgCOD·m–3)
D(S_pro) ~ (q/V_liq)*(S_pro_in - S_pro) + reac_6, #Total propionate (kgCOD·m–3)
D(S_ac) ~ (q/V_liq)*(S_ac_in - S_ac) + reac_7, #Total acetate (kgCOD·m–3)
0 ~ (q/V_liq)*(S_h2_in - S_h2) + reac_8, #Dissolved Hydrogen gas (algebraic term) (kgCOD·m–3)
D(S_ch4) ~ (q/V_liq)*(S_ch4_in - S_ch4) + reac_9, #Dissolved Methane Gas (kgCOD·m–3)
D(S_IC) ~ (q/V_liq)*(S_IC_in - S_IC) + reac_10, #Inorganic carbon (kgCOD·m–3)
D(S_IN) ~ (q/V_liq)*(S_IN_in - S_IN) + reac_11, #Inorganic nitrogen (kgCOD·m–3)
D(S_I) ~ (q/V_liq)*(S_I_in - S_I) + reac_12, #soluble inerts (kgCOD·m–3)
D(X_c) ~ (q/V_liq)*(X_c_in - X_c) + reac_13, #Composites (kgCOD·m–3)
D(X_ch) ~ (q/V_liq)*(X_ch_in - X_ch) + reac_14, #Carbohydrates (kgCOD·m–3)
D(X_pr) ~ (q/V_liq)*(X_pr_in - X_pr) + reac_15, #Proteins (kgCOD·m–3)
D(X_li) ~ (q/V_liq)*(X_li_in - X_li) + reac_16, #Lipids (kgCOD·m–3)
D(X_su) ~ (q/V_liq)*(X_su_in - X_su) + reac_17, #Sugar Degraders (kgCOD·m–3)
D(X_aa) ~ (q/V_liq)*(X_aa_in - X_aa) + reac_18, #Amino acid degraders (kgCOD·m–3)
D(X_fa) ~ (q/V_liq)*(X_fa_in - X_fa) + reac_19, #LCFA degraders (kgCOD·m–3)
D(X_c4) ~ (q/V_liq)*(X_c4_in - X_c4) + reac_20, #Valerate and butyrate degraders (kgCOD·m–3)
D(X_pro) ~ (q/V_liq)*(X_pro_in - X_pro) + reac_21, #Propionate Degraders (kgCOD·m–3)
D(X_ac) ~ (q/V_liq)*(X_ac_in - X_ac) + reac_22, #Acetate Degraders (kgCOD·m–3)
D(X_h2) ~ (q/V_liq)*(X_h2_in - X_h2) + reac_23, #Hydrogen Degraders (kgCOD·m–3)
D(X_I) ~ (q/V_liq)*(X_I_in - X_I) + reac_24, #Particulate Inerts (kgCOD·m–3)
D(S_cat) ~ (q/V_liq)*(S_cat_in - S_cat), #Cations (kgCOD·m–3)
D(S_an) ~ (q/V_liq)*(S_an_in - S_an), #Anions (kgCOD·m–3)
0 ~ S_cat+s_nh4_plus+S_H_plus-s_hco3_minus-s_ac_minus/64-s_pro_minus/112-s_bu_minus/160-s_va_minus/208-K_W/S_H_plus-S_an, #Ion/Charge balance (used to solve for hydrogen ion)
D(S_gas_h2) ~ -S_gas_h2*q_gas/V_gas+ρ_T_1*V_liq/V_gas, #Hydrogen gas (kgCOD·m–3)
D(S_gas_ch4) ~ -S_gas_ch4*q_gas/V_gas+ρ_T_2*V_liq/V_gas, #Methane gas (kgCOD·m–3)
D(S_gas_co2) ~ -S_gas_co2*q_gas/V_gas+ρ_T_3*V_liq/V_gas #Carbon dioxide gas (kgCOD·m–3)
]
return ODESystem(eqs;name)
end
#--------------------------------------------------------------------------------------
#Register ADM1 equations in modeling toolkit and run structural simplifications
@named ADM1_sys = ADM1_factory()
ADM1_simp = structural_simplify(ADM1_sys)
#--------------------------------------------------------------------------------------
#Specify parameter values -> Taken from Rosen 2006 appendix
#Size parameters
size_param=[V_liq=>3400.0,V_gas=>300.0]
#Operational parameters
op_param=[P_atm=>1.013,R=>0.083145,T_op=>308.15,p_gas_h2o=>0.0313*exp(5290*(1/298.15-1/308.15))]
#Carbon stoich parameters
C_param=[C_xc=>0.02786,C_sI=>0.03,C_ch=>0.0313,C_pr=>0.03,C_li=>0.022,C_xI=>0.03,C_su=>0.0313,C_aa=>0.03,C_fa=>0.0217,C_bu=>0.025,C_pro=>0.0268,C_ac=>0.0313,C_bac=>0.0313,C_va=>0.024,C_ch4=>0.0156]
#Yields of product on substrate
f_param=[f_sI_xc=>0.1,f_xI_xc=>0.2,f_ch_xc=>0.20,f_pr_xc=>0.20,f_li_xc=>0.3,f_fa_li=>0.95,f_h2_su=>0.19,f_bu_su=>0.13,f_pro_su=>0.27,f_ac_su=>0.41,f_h2_aa=>0.06,f_va_aa=>0.23,f_bu_aa=>0.26,f_pro_aa=>0.05,f_ac_aa=>0.40]
#Nitrogen stoich parameters
N_param=[N_xc=>0.0376/14,N_I=>.06/14,N_aa=>0.007,N_bac=>0.08/14]
#Yields of biomass on substrate
Y_parama=[Y_su=>0.1,Y_aa=>0.08,Y_fa=>0.06,Y_c4=>0.06,Y_pro=>0.04,Y_ac=>0.05,Y_h2=>0.06]
#Kinetic parameters
k_param=[k_dis=>0.5,k_hyd_ch=>10.0,k_hyd_pr=>10.0,k_hyd_li=>10.0,k_dec_all=>0.02,k_m_su=>30.0,k_m_aa=>50.0,k_m_fa=>6.0,k_m_c4=>20.0,k_m_pro=>13.0,k_m_ac=>8.0,k_m_h2=>35.0,k_p=>5e4,k_La=>200.0]
K_param=[K_S_IN=>1e-4,K_S_su=>0.5,K_S_aa=>0.3,K_S_fa=>0.4,
K_I_H2_fa=>5e-6,K_S_c4=>0.2,K_I_H2_c4=>1e-5,K_S_pro=>0.1,K_I_H2_pro=>3.5e-6,K_S_ac=>0.15,K_I_NH3=>0.0018,K_S_h2=>7e-6,
K_W=>(10^-14)*exp((55900/(0.083145*100))*((1/298.15)-(1/308.15))),K_a_va=>10^-4.86,K_a_bu=>10^-4.82,K_a_pro=>10^-4.88,K_a_ac=>10^-4.76,
K_a_co2=>(10^-6.35)*exp((7646/(0.083145*100))*((1/298.15)-(1/308.15))),K_a_IN=>(10^-9.25)*exp((51965/(0.083145*100))*((1/298.15)-(1/308.15))),K_H_co2=>0.035*exp((-19410/(0.083145*100))*((1/298.15)-(1/308.15))),K_H_ch4=>0.0014*exp((-14240/(0.083145*100))*((1/298.15)-(1/308.15))),K_H_h2=>7.8e-4*exp((-4180/(0.083145*100))*((1/298.15)-(1/308.15)))]
#pH limits
pH_param=[pH_UL_aa=>5.5,pH_LL_aa=>4.0,pH_UL_ac=>7.0,pH_LL_ac=>6.0,pH_UL_h2=>6.0,pH_LL_h2=>5.0]
#Collect all parameters into total parameter array
param_val=[size_param; op_param; C_param; f_param; N_param; Y_parama; k_param; K_param; pH_param]
#--------------------------------------------------------------------------------------
#Define simulation properties and run simulation
#Provide Timespan
tspan = (0.0,280.0)
#Provide initial conditions from PyADM1 model implementation
u0_d=[S_su=>0.012394,S_aa=>0.0055432,S_fa=>0.10741,S_va=>0.012333,
S_bu=>0.014003,S_pro=>0.017584,S_ac=>0.089315,S_h2=>2.51E-07,S_ch4=>0.05549,
S_IC=>0.095149,S_IN=>0.094468,S_I=>0.13087,X_c=>0.10792,X_ch=>0.020517,
X_pr=>0.08422,X_li=>0.043629,X_su=>0.31222,X_aa=>0.93167,X_fa=>0.33839,
X_c4=>0.33577,X_pro=>0.10112,X_ac=>0.67724,X_h2=>0.28484,X_I=>17.2162,S_cat=>1.08E-47,
S_an=>0.0052101,S_H_plus=>(10^-7.26280735729526),S_gas_h2=>1.10E-05,S_gas_ch4=>1.6535,S_gas_co2=>0.01354];
#Specify ODE Problem for modeling toolkit / differentialequations.jl
prob = ODEProblem(ADM1_simp,u0_d,tspan,param_val)
#Solve problem using RadauIIA5 solver for DAE with mass matrix
#This problem generally requires a 4th or 5th order solver - RadauIIA5 demonstrated the best efficiency thus far
tol=1e-10; #Problem requires high tolerance for accurate dynamic solutions
@time sol = solve(prob, RadauIIA5(),abstol=tol,reltol=tol,saveat=(1/96))
#--------------------------------------------------------------------------------------
#RUN POST PROCESSING
#Define states of interest
state = [S_su,S_aa,S_fa,S_va,S_bu,S_pro,
S_ac,S_h2,S_ch4,S_IC,S_IN,S_I,
X_c,X_ch,X_pr,X_li,X_su,X_aa,X_fa,
X_c4,X_pro,X_ac,X_h2,X_I,
S_cat,S_an,S_H_plus,
s_va_minus,s_pro_minus,s_ac_minus,s_hco3_minus,s_nh3,
S_gas_h2,S_gas_ch4,S_gas_co2]
#Extract steady state values
ss=[sol[i][end] for i in state]
#Define function to assign proper ordering to solution variables
function save_sol(sol)
m,n=size(sol)
osol = Array{Float64,2}(undef,m,n)
osol[1,:]=sol[S_su]
osol[2,:]=sol[S_aa]
osol[3,:]=sol[S_fa]
osol[4,:]=sol[S_va]
osol[5,:]=sol[S_bu]
osol[6,:]=sol[S_pro]
osol[7,:]=sol[S_ac]
osol[8,:]=sol[S_h2]
osol[9,:]=sol[S_ch4]
osol[10,:]=sol[S_IC]
osol[11,:]=sol[S_IN]
osol[12,:]=sol[S_I]
osol[13,:]=sol[X_c]
osol[14,:]=sol[X_ch]
osol[15,:]=sol[X_pr]
osol[16,:]=sol[X_li]
osol[17,:]=sol[X_su]
osol[18,:]=sol[X_aa]
osol[19,:]=sol[X_fa]
osol[20,:]=sol[X_c4]
osol[21,:]=sol[X_pro]
osol[22,:]=sol[X_ac]
osol[23,:]=sol[X_h2]
osol[24,:]=sol[X_I]
osol[25,:]=sol[S_cat]
osol[26,:]=sol[S_an]
osol[27,:]=sol[S_H_plus]
osol[28,:]=sol[S_gas_h2]
osol[29,:]=sol[S_gas_ch4]
osol[30,:]=sol[S_gas_co2]
return osol
end
#Define function to plot all state variables of interest over time
function plot_states(sol,states,t_r)
i=0
for var in states
i+=1;
temp=plot(t_r,sol[var],xlabel="Time (days)",ylabel="Concentration (kgCOD·m–3)",title="$(var)",legend=false);
savefig(temp,".\\DynamicStatePlots\\var$(i)$(var).png");
end
end
#Run plotting routine
plot_dat = true #make true to plot data
plot_dat ? plot_states(sol,state,t_r) : nothing
#Write solution to CSV in local directory
save_dat = true #make true to save or false to not save
save_dat ? writedlm("MTK_ADM1sol_d.csv",save_sol(sol),",") : nothing