This repository has been archived by the owner on Sep 9, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 127
/
MultiStickSSDwithUSBCamera_OpenVINO_NCS2.py
executable file
·341 lines (273 loc) · 11.9 KB
/
MultiStickSSDwithUSBCamera_OpenVINO_NCS2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import sys
if sys.version_info.major < 3 or sys.version_info.minor < 4:
print("Please using python3.4 or greater!")
sys.exit(1)
import numpy as np
import cv2, io, time, argparse, re
from os import system
from os.path import isfile, join
from time import sleep
import multiprocessing as mp
try:
from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
from openvino.inference_engine import IENetwork, IEPlugin
import heapq
import threading
lastresults = None
threads = []
processes = []
frameBuffer = None
results = None
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
cam = None
camera_width = 320
camera_height = 240
window_name = ""
ssd_detection_mode = 1
face_detection_mode = 0
elapsedtime = 0.0
LABELS = [['background',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'],
['background', 'face']]
def camThread(LABELS, results, frameBuffer, camera_width, camera_height, vidfps, number_of_camera):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
cam = cv2.VideoCapture(number_of_camera)
if cam.isOpened() != True:
print("USB Camera Open Error!!!")
sys.exit(0)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
frames = color_image
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
res = None
if not results.empty():
res = results.get(False)
detectframecount += 1
imdraw = overlay_on_image(frames, res, LABELS)
lastresults = res
else:
imdraw = overlay_on_image(frames, lastresults, LABELS)
cv2.imshow(window_name, cv2.resize(imdraw, (width, height)))
if cv2.waitKey(1)&0xFF == ord('q'):
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworker):
while True:
ncsworker.predict_async()
class NcsWorker(object):
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
def image_preprocessing(self, color_image):
prepimg = cv2.resize(color_image, (300, 300))
prepimg = prepimg - 127.5
prepimg = prepimg * 0.007843
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def predict_async(self):
try:
if self.frameBuffer.empty():
return
prepimg = self.image_preprocessing(self.frameBuffer.get())
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
cnt, dev = heapq.heappop(self.heap_request)
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
out = self.exec_net.requests[dev].outputs["detection_out"].flatten()
self.results.put([out])
self.inferred_request[dev] = 0
else:
heapq.heappush(self.heap_request, (cnt, dev))
except:
import traceback
traceback.print_exc()
def inferencer(results, frameBuffer, ssd_detection_mode, face_detection_mode, camera_width, camera_height, number_of_ncs):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
thworker = threading.Thread(target=async_infer, args=(NcsWorker(devid, frameBuffer, results, camera_width, camera_height, number_of_ncs),))
thworker.start()
threads.append(thworker)
for th in threads:
th.join()
def overlay_on_image(frames, object_infos, LABELS):
try:
color_image = frames
if isinstance(object_infos, type(None)):
return color_image
# Show images
height = color_image.shape[0]
width = color_image.shape[1]
entire_pixel = height * width
img_cp = color_image.copy()
for (object_info, LABEL) in zip(object_infos, LABELS):
drawing_initial_flag = True
for box_index in range(100):
if object_info[box_index + 1] == 0.0:
break
base_index = box_index * 7
if (not np.isfinite(object_info[base_index]) or
not np.isfinite(object_info[base_index + 1]) or
not np.isfinite(object_info[base_index + 2]) or
not np.isfinite(object_info[base_index + 3]) or
not np.isfinite(object_info[base_index + 4]) or
not np.isfinite(object_info[base_index + 5]) or
not np.isfinite(object_info[base_index + 6])):
continue
x1 = max(0, int(object_info[base_index + 3] * height))
y1 = max(0, int(object_info[base_index + 4] * width))
x2 = min(height, int(object_info[base_index + 5] * height))
y2 = min(width, int(object_info[base_index + 6] * width))
object_info_overlay = object_info[base_index:base_index + 7]
min_score_percent = 60
source_image_width = width
source_image_height = height
base_index = 0
class_id = object_info_overlay[base_index + 1]
percentage = int(object_info_overlay[base_index + 2] * 100)
if (percentage <= min_score_percent):
continue
box_left = int(object_info_overlay[base_index + 3] * source_image_width)
box_top = int(object_info_overlay[base_index + 4] * source_image_height)
box_right = int(object_info_overlay[base_index + 5] * source_image_width)
box_bottom = int(object_info_overlay[base_index + 6] * source_image_height)
label_text = LABEL[int(class_id)] + " (" + str(percentage) + "%)"
box_color = (255, 128, 0)
box_thickness = 1
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
label_background_color = (125, 175, 75)
label_text_color = (255, 255, 255)
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_left = box_left
label_top = box_top - label_size[1]
if (label_top < 1):
label_top = 1
label_right = label_left + label_size[0]
label_bottom = label_top + label_size[1]
cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
cv2.putText(img_cp, fps, (width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(img_cp, detectfps, (width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
return img_cp
except:
import traceback
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-cn','--numberofcamera',dest='number_of_camera',type=int,default=0,help='USB camera number. (Default=0)')
parser.add_argument('-wd','--width',dest='camera_width',type=int,default=320,help='Width of the frames in the video stream. (Default=320)')
parser.add_argument('-ht','--height',dest='camera_height',type=int,default=240,help='Height of the frames in the video stream. (Default=240)')
parser.add_argument('-sd','--ssddetection',dest='ssd_detection_mode',type=int,default=1,help='[Future functions] SSDDetectionMode. (0:=Disabled, 1:=Enabled Default=1)')
parser.add_argument('-fd','--facedetection',dest='face_detection_mode',type=int,default=0,help='[Future functions] FaceDetectionMode. (0:=Disabled, 1:=Full, 2:=Short Default=0)')
parser.add_argument('-numncs','--numberofncs',dest='number_of_ncs',type=int,default=1,help='Number of NCS. (Default=1)')
parser.add_argument('-vidfps','--fpsofvideo',dest='fps_of_video',type=int,default=30,help='FPS of Video. (Default=30)')
args = parser.parse_args()
number_of_camera = args.number_of_camera
camera_width = args.camera_width
camera_height = args.camera_height
ssd_detection_mode = args.ssd_detection_mode
face_detection_mode = args.face_detection_mode
number_of_ncs = args.number_of_ncs
vidfps = args.fps_of_video
if ssd_detection_mode == 0 and face_detection_mode != 0:
del(LABELS[0])
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start streaming
p = mp.Process(target=camThread,
args=(LABELS, results, frameBuffer, camera_width, camera_height, vidfps, number_of_camera),
daemon=True)
p.start()
processes.append(p)
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer,
args=(results, frameBuffer, ssd_detection_mode, face_detection_mode, camera_width, camera_height, number_of_ncs),
daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")