-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain_tflite.py
155 lines (127 loc) · 5.98 KB
/
main_tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import cv2
import time
import os
import sys
import numpy as np
import argparse
from sklearn.neighbors import LocalOutlierFactor
from sklearn.preprocessing import MinMaxScaler
from sklearn.externals import joblib
from tensorflow.contrib.lite.python import interpreter as interpreter_wrapper
def main(camera_FPS, camera_width, camera_height, inference_scale, threshold, num_threads):
interpreter = None
input_details = None
output_details = None
path = "pictures/"
if not os.path.exists(path):
os.mkdir(path)
model_path = "OneClassAnomalyDetection-RaspberryPi3/DOC/model/"
if os.path.exists(model_path):
# LOF
print("LOF model building...")
x_train = np.loadtxt(model_path + "train.csv",delimiter=",")
ms = MinMaxScaler()
x_train = ms.fit_transform(x_train)
# fit the LOF model
clf = LocalOutlierFactor(n_neighbors=5)
clf.fit(x_train)
# DOC
print("DOC Model loading...")
interpreter = interpreter_wrapper.Interpreter(model_path="models/tensorflow/weights.tflite")
interpreter.allocate_tensors()
interpreter.set_num_threads(num_threads)
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print("loading finish")
else:
print("Nothing model folder")
sys.exit(0)
base_range = min(camera_width, camera_height)
stretch_ratio = inference_scale / base_range
resize_image_width = int(camera_width * stretch_ratio)
resize_image_height = int(camera_height * stretch_ratio)
if base_range == camera_height:
crop_start_x = (resize_image_width - inference_scale) // 2
crop_start_y = 0
else:
crop_start_x = 0
crop_start_y = (resize_image_height - inference_scale) // 2
crop_end_x = crop_start_x + inference_scale
crop_end_y = crop_start_y + inference_scale
fps = ""
message = "Push [p] to take a picture"
result = "Push [s] to start anomaly detection"
flag_score = False
picture_num = 1
elapsedTime = 0
score = 0
score_mean = np.zeros(10)
mean_NO = 0
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FPS, camera_FPS)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
time.sleep(1)
while cap.isOpened():
t1 = time.time()
ret, image = cap.read()
if not ret:
break
image_copy = image.copy()
# prediction
if flag_score == True:
prepimg = cv2.resize(image, (resize_image_width, resize_image_height))
prepimg = prepimg[crop_start_y:crop_end_y, crop_start_x:crop_end_x]
prepimg = np.array(prepimg).reshape((1, inference_scale, inference_scale, 3))
prepimg = prepimg / 255
interpreter.set_tensor(input_details[0]['index'], np.array(prepimg, dtype=np.float32))
interpreter.invoke()
outputs = interpreter.get_tensor(output_details[0]['index'])
outputs = outputs.reshape((len(outputs), -1))
outputs = ms.transform(outputs)
score = -clf._decision_function(outputs)
# output score
if flag_score == False:
cv2.putText(image, result, (camera_width - 350, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
else:
score_mean[mean_NO] = score[0]
mean_NO += 1
if mean_NO == len(score_mean):
mean_NO = 0
if np.mean(score_mean) > threshold: #red if score is big
cv2.putText(image, "{:.1f} Score".format(np.mean(score_mean)),(camera_width - 230, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA)
else: # blue if score is small
cv2.putText(image, "{:.1f} Score".format(np.mean(score_mean)),(camera_width - 230, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1, cv2.LINE_AA)
# message
cv2.putText(image, message, (camera_width - 285, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(image, fps, (camera_width - 164, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0 ,0), 1, cv2.LINE_AA)
cv2.imshow("Result", image)
# FPS
elapsedTime = time.time() - t1
fps = "{:.0f} FPS".format(1/elapsedTime)
# quit or calculate score or take a picture
key = cv2.waitKey(1)&0xFF
if key == ord("q"):
break
if key == ord("p"):
cv2.imwrite(path + str(picture_num) + ".jpg", image_copy)
picture_num += 1
if key == ord("s"):
flag_score = True
cv2.destroyAllWindows()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-cfps","--camera_FPS",dest="camera_FPS",type=int,default=30,help="USB Camera FPS. (Default=30)")
parser.add_argument("-cwd","--camera_width",dest="camera_width",type=int,default=320,help="USB Camera Width. (Default=320)")
parser.add_argument("-cht","--camera_height",dest="camera_height",type=int,default=240,help="USB Camera Height. (Default=240)")
parser.add_argument("-sc","--inference_scale",dest="inference_scale",type=int,default=96,help="Inference scale. (Default=96)")
parser.add_argument("-th","--threshold",dest="threshold",type=int,default=2.0,help="Threshold. (Default=2.0)")
parser.add_argument("-nt","--num_threads",dest="num_threads",type=int,default=4,help="Number of inference threads. (Default=4)")
args = parser.parse_args()
camera_FPS = args.camera_FPS
camera_width = args.camera_width
camera_height = args.camera_height
inference_scale = args.inference_scale
threshold = args.threshold
num_threads = args.num_threads
main(camera_FPS, camera_width, camera_height, inference_scale, threshold, num_threads)