@@ -466,15 +466,6 @@ def get_optimization_parameters(self) -> list[str]:
466466 """
467467 return [p .id for p in self .parameter_table .parameters if p .estimate ]
468468
469- def get_optimization_parameter_scales (self ) -> dict [str , str ]:
470- """
471- Return list of optimization parameter scaling strings.
472-
473- See :py:func:`petab.parameters.get_optimization_parameters`.
474- """
475- # TODO: to be removed in v2?
476- return parameters .get_optimization_parameter_scaling (self .parameter_df )
477-
478469 def get_observable_ids (self ) -> list [str ]:
479470 """
480471 Returns dictionary of observable ids.
@@ -539,9 +530,7 @@ def x_fixed_ids(self) -> list[str]:
539530 """Parameter table parameter IDs, for fixed parameters."""
540531 return self .get_x_ids (free = False )
541532
542- def get_x_nominal (
543- self , free : bool = True , fixed : bool = True , scaled : bool = False
544- ) -> list :
533+ def get_x_nominal (self , free : bool = True , fixed : bool = True ) -> list :
545534 """Generic function to get parameter nominal values.
546535
547536 Parameters
@@ -551,9 +540,6 @@ def get_x_nominal(
551540 fixed:
552541 Whether to return fixed parameters, i.e. parameters not to
553542 estimate.
554- scaled:
555- Whether to scale the values according to the parameter scale,
556- or return them on linear scale.
557543
558544 Returns
559545 -------
@@ -564,10 +550,6 @@ def get_x_nominal(
564550 for p in self .parameter_table .parameters
565551 ]
566552
567- if scaled :
568- v = list (
569- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
570- )
571553 return self ._apply_mask (v , free = free , fixed = fixed )
572554
573555 @property
@@ -585,28 +567,7 @@ def x_nominal_fixed(self) -> list:
585567 """Parameter table nominal values, for fixed parameters."""
586568 return self .get_x_nominal (free = False )
587569
588- @property
589- def x_nominal_scaled (self ) -> list :
590- """Parameter table nominal values with applied parameter scaling"""
591- return self .get_x_nominal (scaled = True )
592-
593- @property
594- def x_nominal_free_scaled (self ) -> list :
595- """Parameter table nominal values with applied parameter scaling,
596- for free parameters.
597- """
598- return self .get_x_nominal (fixed = False , scaled = True )
599-
600- @property
601- def x_nominal_fixed_scaled (self ) -> list :
602- """Parameter table nominal values with applied parameter scaling,
603- for fixed parameters.
604- """
605- return self .get_x_nominal (free = False , scaled = True )
606-
607- def get_lb (
608- self , free : bool = True , fixed : bool = True , scaled : bool = False
609- ):
570+ def get_lb (self , free : bool = True , fixed : bool = True ):
610571 """Generic function to get lower parameter bounds.
611572
612573 Parameters
@@ -616,9 +577,6 @@ def get_lb(
616577 fixed:
617578 Whether to return fixed parameters, i.e. parameters not to
618579 estimate.
619- scaled:
620- Whether to scale the values according to the parameter scale,
621- or return them on linear scale.
622580
623581 Returns
624582 -------
@@ -628,25 +586,14 @@ def get_lb(
628586 p .lb if p .lb is not None else nan
629587 for p in self .parameter_table .parameters
630588 ]
631- if scaled :
632- v = list (
633- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
634- )
635589 return self ._apply_mask (v , free = free , fixed = fixed )
636590
637591 @property
638592 def lb (self ) -> list :
639593 """Parameter table lower bounds."""
640594 return self .get_lb ()
641595
642- @property
643- def lb_scaled (self ) -> list :
644- """Parameter table lower bounds with applied parameter scaling"""
645- return self .get_lb (scaled = True )
646-
647- def get_ub (
648- self , free : bool = True , fixed : bool = True , scaled : bool = False
649- ):
596+ def get_ub (self , free : bool = True , fixed : bool = True ):
650597 """Generic function to get upper parameter bounds.
651598
652599 Parameters
@@ -656,9 +603,6 @@ def get_ub(
656603 fixed:
657604 Whether to return fixed parameters, i.e. parameters not to
658605 estimate.
659- scaled:
660- Whether to scale the values according to the parameter scale,
661- or return them on linear scale.
662606
663607 Returns
664608 -------
@@ -668,22 +612,13 @@ def get_ub(
668612 p .ub if p .ub is not None else nan
669613 for p in self .parameter_table .parameters
670614 ]
671- if scaled :
672- v = list (
673- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
674- )
675615 return self ._apply_mask (v , free = free , fixed = fixed )
676616
677617 @property
678618 def ub (self ) -> list :
679619 """Parameter table upper bounds"""
680620 return self .get_ub ()
681621
682- @property
683- def ub_scaled (self ) -> list :
684- """Parameter table upper bounds with applied parameter scaling"""
685- return self .get_ub (scaled = True )
686-
687622 @property
688623 def x_free_indices (self ) -> list [int ]:
689624 """Parameter table estimated parameter indices."""
@@ -752,56 +687,6 @@ def sample_parameter_startpoints_dict(
752687 )
753688 ]
754689
755- # TODO: remove in v2?
756- def unscale_parameters (
757- self ,
758- x_dict : dict [str , float ],
759- ) -> dict [str , float ]:
760- """Unscale parameter values.
761-
762- Parameters
763- ----------
764- x_dict:
765- Keys are parameter IDs in the PEtab problem, values are scaled
766- parameter values.
767-
768- Returns
769- -------
770- The unscaled parameter values.
771- """
772- return {
773- parameter_id : parameters .unscale (
774- parameter_value ,
775- self .parameter_df [PARAMETER_SCALE ][parameter_id ],
776- )
777- for parameter_id , parameter_value in x_dict .items ()
778- }
779-
780- # TODO: remove in v2?
781- def scale_parameters (
782- self ,
783- x_dict : dict [str , float ],
784- ) -> dict [str , float ]:
785- """Scale parameter values.
786-
787- Parameters
788- ----------
789- x_dict:
790- Keys are parameter IDs in the PEtab problem, values are unscaled
791- parameter values.
792-
793- Returns
794- -------
795- The scaled parameter values.
796- """
797- return {
798- parameter_id : parameters .scale (
799- parameter_value ,
800- self .parameter_df [PARAMETER_SCALE ][parameter_id ],
801- )
802- for parameter_id , parameter_value in x_dict .items ()
803- }
804-
805690 @property
806691 def n_estimated (self ) -> int :
807692 """The number of estimated parameters."""
@@ -943,7 +828,6 @@ def add_parameter(
943828 id_ : str ,
944829 estimate : bool | str = True ,
945830 nominal_value : Number | None = None ,
946- scale : str = None ,
947831 lb : Number = None ,
948832 ub : Number = None ,
949833 prior_dist : str = None ,
@@ -956,7 +840,6 @@ def add_parameter(
956840 id_: The parameter id
957841 estimate: Whether the parameter is estimated
958842 nominal_value: The nominal value of the parameter
959- scale: The parameter scale
960843 lb: The lower bound of the parameter
961844 ub: The upper bound of the parameter
962845 prior_dist: The type of the prior distribution
@@ -970,8 +853,6 @@ def add_parameter(
970853 record [ESTIMATE ] = estimate
971854 if nominal_value is not None :
972855 record [NOMINAL_VALUE ] = nominal_value
973- if scale is not None :
974- record [PARAMETER_SCALE ] = scale
975856 if lb is not None :
976857 record [LOWER_BOUND ] = lb
977858 if ub is not None :
0 commit comments