|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Chapter 16: Difficulties of Unconfoundedness in Observational Studies for Causal Effects" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import numpy as np\n", |
| 17 | + "import pandas as pd\n", |
| 18 | + "import scipy as sp\n", |
| 19 | + "import statsmodels.api as sm\n", |
| 20 | + "import statsmodels.formula.api as smf\n", |
| 21 | + "# viz\n", |
| 22 | + "import matplotlib\n", |
| 23 | + "import matplotlib.pyplot as plt\n", |
| 24 | + "import seaborn as sns\n", |
| 25 | + "font = {'family' : 'IBM Plex Sans Condensed',\n", |
| 26 | + " 'weight' : 'normal',\n", |
| 27 | + " 'size' : 10}\n", |
| 28 | + "plt.rc('font', **font)\n", |
| 29 | + "plt.rcParams['figure.figsize'] = (10, 10)\n", |
| 30 | + "%matplotlib inline\n", |
| 31 | + "\n", |
| 32 | + "from utils import *\n" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 2, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [ |
| 40 | + { |
| 41 | + "data": { |
| 42 | + "text/html": [ |
| 43 | + "<div>\n", |
| 44 | + "<style scoped>\n", |
| 45 | + " .dataframe tbody tr th:only-of-type {\n", |
| 46 | + " vertical-align: middle;\n", |
| 47 | + " }\n", |
| 48 | + "\n", |
| 49 | + " .dataframe tbody tr th {\n", |
| 50 | + " vertical-align: top;\n", |
| 51 | + " }\n", |
| 52 | + "\n", |
| 53 | + " .dataframe thead th {\n", |
| 54 | + " text-align: right;\n", |
| 55 | + " }\n", |
| 56 | + "</style>\n", |
| 57 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 58 | + " <thead>\n", |
| 59 | + " <tr style=\"text-align: right;\">\n", |
| 60 | + " <th></th>\n", |
| 61 | + " <th>U1</th>\n", |
| 62 | + " <th>U2</th>\n", |
| 63 | + " <th>X</th>\n", |
| 64 | + " <th>Y</th>\n", |
| 65 | + " </tr>\n", |
| 66 | + " </thead>\n", |
| 67 | + " <tbody>\n", |
| 68 | + " <tr>\n", |
| 69 | + " <th>0</th>\n", |
| 70 | + " <td>0.868786</td>\n", |
| 71 | + " <td>3.271211</td>\n", |
| 72 | + " <td>2.870715</td>\n", |
| 73 | + " <td>2.776858</td>\n", |
| 74 | + " </tr>\n", |
| 75 | + " <tr>\n", |
| 76 | + " <th>1</th>\n", |
| 77 | + " <td>0.102776</td>\n", |
| 78 | + " <td>-1.424613</td>\n", |
| 79 | + " <td>-0.343647</td>\n", |
| 80 | + " <td>-2.323463</td>\n", |
| 81 | + " </tr>\n", |
| 82 | + " <tr>\n", |
| 83 | + " <th>2</th>\n", |
| 84 | + " <td>-0.473300</td>\n", |
| 85 | + " <td>-0.808196</td>\n", |
| 86 | + " <td>-2.437951</td>\n", |
| 87 | + " <td>-0.117681</td>\n", |
| 88 | + " </tr>\n", |
| 89 | + " <tr>\n", |
| 90 | + " <th>3</th>\n", |
| 91 | + " <td>-0.524105</td>\n", |
| 92 | + " <td>-0.641949</td>\n", |
| 93 | + " <td>-0.149231</td>\n", |
| 94 | + " <td>-0.537228</td>\n", |
| 95 | + " </tr>\n", |
| 96 | + " <tr>\n", |
| 97 | + " <th>4</th>\n", |
| 98 | + " <td>-0.183823</td>\n", |
| 99 | + " <td>0.540470</td>\n", |
| 100 | + " <td>-0.029903</td>\n", |
| 101 | + " <td>1.374849</td>\n", |
| 102 | + " </tr>\n", |
| 103 | + " </tbody>\n", |
| 104 | + "</table>\n", |
| 105 | + "</div>" |
| 106 | + ], |
| 107 | + "text/plain": [ |
| 108 | + " U1 U2 X Y\n", |
| 109 | + "0 0.868786 3.271211 2.870715 2.776858\n", |
| 110 | + "1 0.102776 -1.424613 -0.343647 -2.323463\n", |
| 111 | + "2 -0.473300 -0.808196 -2.437951 -0.117681\n", |
| 112 | + "3 -0.524105 -0.641949 -0.149231 -0.537228\n", |
| 113 | + "4 -0.183823 0.540470 -0.029903 1.374849" |
| 114 | + ] |
| 115 | + }, |
| 116 | + "execution_count": 2, |
| 117 | + "metadata": {}, |
| 118 | + "output_type": "execute_result" |
| 119 | + } |
| 120 | + ], |
| 121 | + "source": [ |
| 122 | + "n = int(1e6)\n", |
| 123 | + "df = simulate(\n", |
| 124 | + " U1 = lambda: np.random.normal(size = n),\n", |
| 125 | + " U2 = lambda: np.random.normal(size = n),\n", |
| 126 | + " X = lambda U1, U2: U1 + U2 + np.random.normal(size=n),\n", |
| 127 | + " Y = lambda U2: U2 + np.random.normal(size=n),\n", |
| 128 | + " )\n", |
| 129 | + "\n", |
| 130 | + "df.head()\n" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "## M-bias" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "markdown", |
| 142 | + "metadata": {}, |
| 143 | + "source": [ |
| 144 | + "### continuous treatment\n" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 3, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "data": { |
| 154 | + "text/plain": [ |
| 155 | + "(-0.0005873841517624718, -0.19992316827000112)" |
| 156 | + ] |
| 157 | + }, |
| 158 | + "execution_count": 3, |
| 159 | + "metadata": {}, |
| 160 | + "output_type": "execute_result" |
| 161 | + } |
| 162 | + ], |
| 163 | + "source": [ |
| 164 | + "\n", |
| 165 | + "df['Z'] = df.U1 + np.random.normal(size=n)\n", |
| 166 | + "\n", |
| 167 | + "smf.ols(\"Y ~ Z\", df).fit().params[1], smf.ols(\"Y ~ Z + X\", df).fit().params[1]\n" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "markdown", |
| 172 | + "metadata": {}, |
| 173 | + "source": [ |
| 174 | + "### binary treatment" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": 4, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [ |
| 182 | + { |
| 183 | + "data": { |
| 184 | + "text/plain": [ |
| 185 | + "(0.0010055221102859783, -0.4154833890606614)" |
| 186 | + ] |
| 187 | + }, |
| 188 | + "execution_count": 4, |
| 189 | + "metadata": {}, |
| 190 | + "output_type": "execute_result" |
| 191 | + } |
| 192 | + ], |
| 193 | + "source": [ |
| 194 | + "df['Z'] = df.Z >= 0\n", |
| 195 | + "\n", |
| 196 | + "smf.ols(\"Y ~ Z\", df).fit().params[1], smf.ols(\"Y ~ Z + X\", df).fit().params[1]\n" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "metadata": {}, |
| 202 | + "source": [ |
| 203 | + "## Z-bias" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": 5, |
| 209 | + "metadata": {}, |
| 210 | + "outputs": [], |
| 211 | + "source": [ |
| 212 | + "n = int(1e6)\n", |
| 213 | + "df = simulate(\n", |
| 214 | + " U = lambda: np.random.normal(size = n),\n", |
| 215 | + " X = lambda: np.random.normal(size = n),\n", |
| 216 | + " Z = lambda X, U: X + U + np.random.normal(size=n),\n", |
| 217 | + " Y = lambda U: U + np.random.normal(size=n),\n", |
| 218 | + " )\n" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": 7, |
| 224 | + "metadata": {}, |
| 225 | + "outputs": [ |
| 226 | + { |
| 227 | + "data": { |
| 228 | + "text/plain": [ |
| 229 | + "(0.33315108130802534, 0.4997989461297992)" |
| 230 | + ] |
| 231 | + }, |
| 232 | + "execution_count": 7, |
| 233 | + "metadata": {}, |
| 234 | + "output_type": "execute_result" |
| 235 | + } |
| 236 | + ], |
| 237 | + "source": [ |
| 238 | + "smf.ols(\"Y ~ Z\", df).fit().params[1], smf.ols(\"Y ~ Z + X\", df).fit().params[1]\n" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "markdown", |
| 243 | + "metadata": {}, |
| 244 | + "source": [ |
| 245 | + "Adjusted comparison is more biased." |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "markdown", |
| 250 | + "metadata": {}, |
| 251 | + "source": [ |
| 252 | + "### stronger association" |
| 253 | + ] |
| 254 | + }, |
| 255 | + { |
| 256 | + "cell_type": "code", |
| 257 | + "execution_count": 8, |
| 258 | + "metadata": {}, |
| 259 | + "outputs": [ |
| 260 | + { |
| 261 | + "data": { |
| 262 | + "text/plain": [ |
| 263 | + "(0.16699612964603475, 0.4998217107196198)" |
| 264 | + ] |
| 265 | + }, |
| 266 | + "execution_count": 8, |
| 267 | + "metadata": {}, |
| 268 | + "output_type": "execute_result" |
| 269 | + } |
| 270 | + ], |
| 271 | + "source": [ |
| 272 | + "df['Z'] = 2 * df.X + df.U + np.random.normal(size=n)\n", |
| 273 | + "smf.ols(\"Y ~ Z\", df).fit().params[1], smf.ols(\"Y ~ Z + X\", df).fit().params[1]\n" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": 9, |
| 279 | + "metadata": {}, |
| 280 | + "outputs": [ |
| 281 | + { |
| 282 | + "data": { |
| 283 | + "text/plain": [ |
| 284 | + "(0.00990024072283937, 0.500804991941852)" |
| 285 | + ] |
| 286 | + }, |
| 287 | + "execution_count": 9, |
| 288 | + "metadata": {}, |
| 289 | + "output_type": "execute_result" |
| 290 | + } |
| 291 | + ], |
| 292 | + "source": [ |
| 293 | + "df['Z'] = 10 * df.X + df.U + np.random.normal(size=n)\n", |
| 294 | + "smf.ols(\"Y ~ Z\", df).fit().params[1], smf.ols(\"Y ~ Z + X\", df).fit().params[1]\n" |
| 295 | + ] |
| 296 | + } |
| 297 | + ], |
| 298 | + "metadata": { |
| 299 | + "kernelspec": { |
| 300 | + "display_name": "metrics", |
| 301 | + "language": "python", |
| 302 | + "name": "python3" |
| 303 | + }, |
| 304 | + "language_info": { |
| 305 | + "codemirror_mode": { |
| 306 | + "name": "ipython", |
| 307 | + "version": 3 |
| 308 | + }, |
| 309 | + "file_extension": ".py", |
| 310 | + "mimetype": "text/x-python", |
| 311 | + "name": "python", |
| 312 | + "nbconvert_exporter": "python", |
| 313 | + "pygments_lexer": "ipython3", |
| 314 | + "version": "3.11.5" |
| 315 | + } |
| 316 | + }, |
| 317 | + "nbformat": 4, |
| 318 | + "nbformat_minor": 2 |
| 319 | +} |
0 commit comments