|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Chapter 22: Disentangling Mixture Distributions and Instrumental Variable Inequalities" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "# n_z,d,d1 under monotonicity\n", |
| 17 | + "def IVbinary(n111, n110, n101, n100, n011, n010, n001, n000):\n", |
| 18 | + " n_tr = n111 + n110 + n101 + n100\n", |
| 19 | + " n_co = n011 + n010 + n001 + n000\n", |
| 20 | + " n = n_tr + n_co\n", |
| 21 | + "\n", |
| 22 | + " # proportions of latent strata\n", |
| 23 | + " pi_n = (n101 + n100)/ n_tr # p(d = 0 | z = 1) never taker\n", |
| 24 | + " pi_a = (n011 + n010)/ n_co # p(d = 1 | z = 0) always taker\n", |
| 25 | + " pi_c = 1 - pi_n - pi_a # by monotonicity, the only remaining group are compliers\n", |
| 26 | + "\n", |
| 27 | + " # four observed means of the outcomes (Z = z, D = d)\n", |
| 28 | + " mean_y_11 = n111 / (n111 + n110)\n", |
| 29 | + " mean_y_10 = n101 / (n101 + n100)\n", |
| 30 | + " mean_y_01 = n011 / (n011 + n010)\n", |
| 31 | + " mean_y_00 = n001 / (n001 + n000)\n", |
| 32 | + " # all four means are positive for binary outcomes\n", |
| 33 | + "\n", |
| 34 | + " # means of the outcome of two strata\n", |
| 35 | + " mu_n1, mu_a0 = mean_y_10, mean_y_01\n", |
| 36 | + " # exclusion implies 0 and 1 are same for always takers and never takers\n", |
| 37 | + " mu_n0, mu_a1 = mu_n1, mu_a0\n", |
| 38 | + " # stratum (Z=1, D = 1) is a mixture of c, a\n", |
| 39 | + " mu_c1 = ((pi_c + pi_a) * mean_y_11 - pi_a * mu_a1) / pi_c\n", |
| 40 | + " # stratum (Z=0, D = 0) is a mixture of c, n\n", |
| 41 | + " mu_c0 = ((pi_c + pi_n) * mean_y_00 - pi_n * mu_n0) / pi_c\n", |
| 42 | + " # identifiable quantities\n", |
| 43 | + " return {\n", |
| 44 | + " 'pi_c' : pi_c,\n", |
| 45 | + " 'pi_n' : pi_n,\n", |
| 46 | + " 'pi_a' : pi_a,\n", |
| 47 | + " 'mu_n1': mu_n1,\n", |
| 48 | + " 'mu_n0': mu_n0,\n", |
| 49 | + " 'mu_a1': mu_a1,\n", |
| 50 | + " 'mu_a0': mu_a0,\n", |
| 51 | + " 'mu_c1': mu_c1,\n", |
| 52 | + " 'mu_c0': mu_c0,\n", |
| 53 | + " 'tau_c': mu_c1 - mu_c0,\n", |
| 54 | + " }\n", |
| 55 | + "\n" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 2, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [ |
| 63 | + { |
| 64 | + "data": { |
| 65 | + "text/plain": [ |
| 66 | + "{'pi_c': 0.44305817033089756,\n", |
| 67 | + " 'pi_n': 0.4247104247104247,\n", |
| 68 | + " 'pi_a': 0.1322314049586777,\n", |
| 69 | + " 'mu_n1': 0.6181818181818182,\n", |
| 70 | + " 'mu_n0': 0.6181818181818182,\n", |
| 71 | + " 'mu_a1': 0.75,\n", |
| 72 | + " 'mu_a0': 0.75,\n", |
| 73 | + " 'mu_c1': 0.7086064097947424,\n", |
| 74 | + " 'mu_c0': 0.6292041771696075,\n", |
| 75 | + " 'tau_c': 0.0794022326251349}" |
| 76 | + ] |
| 77 | + }, |
| 78 | + "execution_count": 2, |
| 79 | + "metadata": {}, |
| 80 | + "output_type": "execute_result" |
| 81 | + } |
| 82 | + ], |
| 83 | + "source": [ |
| 84 | + "## Investigators et al.(2014) data\n", |
| 85 | + "(investigators_analysis := IVbinary(\n", |
| 86 | + " n111 = 107,\n", |
| 87 | + " n110 = 42,\n", |
| 88 | + " n101 = 68,\n", |
| 89 | + " n100 = 42,\n", |
| 90 | + " n011 = 24,\n", |
| 91 | + " n010 = 8,\n", |
| 92 | + " n001 = 131,\n", |
| 93 | + " n000 = 79\n", |
| 94 | + "))\n", |
| 95 | + "\n" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 3, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [ |
| 103 | + { |
| 104 | + "data": { |
| 105 | + "text/plain": [ |
| 106 | + "{'pi_c': 0.11839971280558428,\n", |
| 107 | + " 'pi_n': 0.6922554347826086,\n", |
| 108 | + " 'pi_a': 0.18934485241180707,\n", |
| 109 | + " 'mu_n1': 0.08243375858684986,\n", |
| 110 | + " 'mu_n0': 0.08243375858684986,\n", |
| 111 | + " 'mu_a1': 0.11406844106463879,\n", |
| 112 | + " 'mu_a0': 0.11406844106463879,\n", |
| 113 | + " 'mu_c1': -0.004548064490810916,\n", |
| 114 | + " 'mu_c0': 0.12000941833518534,\n", |
| 115 | + " 'tau_c': -0.12455748282599625}" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "execution_count": 3, |
| 119 | + "metadata": {}, |
| 120 | + "output_type": "execute_result" |
| 121 | + } |
| 122 | + ], |
| 123 | + "source": [ |
| 124 | + "(flu_analysis := IVbinary(\n", |
| 125 | + " n111 = 31,\n", |
| 126 | + " n110 = 422,\n", |
| 127 | + " n101 = 84,\n", |
| 128 | + " n100 = 935,\n", |
| 129 | + " n011 = 30,\n", |
| 130 | + " n010 = 233,\n", |
| 131 | + " n001 = 99,\n", |
| 132 | + " n000 = 1027\n", |
| 133 | + "))\n" |
| 134 | + ] |
| 135 | + } |
| 136 | + ], |
| 137 | + "metadata": { |
| 138 | + "kernelspec": { |
| 139 | + "display_name": "metrics", |
| 140 | + "language": "python", |
| 141 | + "name": "python3" |
| 142 | + }, |
| 143 | + "language_info": { |
| 144 | + "codemirror_mode": { |
| 145 | + "name": "ipython", |
| 146 | + "version": 3 |
| 147 | + }, |
| 148 | + "file_extension": ".py", |
| 149 | + "mimetype": "text/x-python", |
| 150 | + "name": "python", |
| 151 | + "nbconvert_exporter": "python", |
| 152 | + "pygments_lexer": "ipython3", |
| 153 | + "version": "3.11.5" |
| 154 | + } |
| 155 | + }, |
| 156 | + "nbformat": 4, |
| 157 | + "nbformat_minor": 2 |
| 158 | +} |
0 commit comments