-
Notifications
You must be signed in to change notification settings - Fork 31
/
process_mimic_modified.py
272 lines (245 loc) · 9.62 KB
/
process_mimic_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# This script processes MIMIC-III dataset and builds longitudinal records for patients with 2+ encounter.
# The output data are 4 pickled pandas dataframes suitable for training RETAIN-Keras
# Originally Written by Edward Choi (mp2893@gatech.edu) https://github.com/mp2893/retain
# Modified by Timothy Rosenflanz (timothy.rosenflanz@optum.com) to work with RETAIN-Keras
# Usage: Put this script to the folder where MIMIC-III CSV files are located. Then execute the below command.
# python process_mimic_modified.py ADMISSIONS.csv DIAGNOSES_ICD.csv PATIENTS.csv <output directory> <train data proportion>
# Output files
# data_train.pkl: Pickled dataframe used for training containing the codes and to_event sequences as specified in the README
# data_test.pkl: Pickled dataframe used for testing containing the codes and to_event sequences as specified in the README
# data_train_3digit.pkl: Pickled dataframe used for training containing the 3 digit codes and to_event sequences as specified in the README
# data_test_3digit.pkl: Pickled dataframe used for testing containing the 3 digit codes and to_event sequences as specified in the README
# target_train.pkl: Pickled dataframe containing target labels for training as specified in the README
# target_test.pkl: Pickled dataframe containing target labels for testing as specified in the README
# dictionary.pkl: Python dictionary that maps string diagnosis codes to integer diagnosis codes.
# dictionary_3digit.pkl: Python dictionary that maps string diagnosis codes to integer 3 digit diagnosis codes.
# Imports
import os
import sys
import pickle
import regex as re
import numpy as np
import pandas as pd
from datetime import datetime
from sklearn.model_selection import train_test_split
def convert_to_icd9(dx_str):
"""
Maps an ICD diagnosis code to ICD9
"""
if dx_str.startswith("E"):
if len(dx_str) > 4:
return dx_str[:4] + "." + dx_str[4:]
else:
return dx_str
else:
if len(dx_str) > 3:
return dx_str[:3] + "." + dx_str[3:]
else:
return dx_str
def convert_to_3digit_icd9(dx_str):
"""
Roll up a diagnosis code to 3 digits
"""
if dx_str.startswith("E"):
if len(dx_str) > 4:
return dx_str[:4]
else:
return dx_str
else:
if len(dx_str) > 3:
return dx_str[:3]
else:
return dx_str
if __name__ == "__main__":
admission_file = sys.argv[1]
diagnosis_file = sys.argv[2]
patients_file = sys.argv[3]
out_directory = sys.argv[4]
train_proportion = float(sys.argv[5])
# Read mortality data
print("Collecting mortality information...")
pid_dod_map = {}
infd = open(patients_file, "r")
infd.readline()
for line in infd:
tokens = line.strip().split(",")
pid = int(tokens[1])
dod_hosp = tokens[5]
if len(dod_hosp) > 0:
pid_dod_map[pid] = 1
else:
pid_dod_map[pid] = 0
infd.close()
# Read and create admission records
print("Building pid-admission mapping, admission-date mapping...")
pid_adm_map = {}
adm_date_map = {}
infd = open(admission_file, "r")
infd.readline()
for line in infd:
tokens = line.strip().split(",")
pid = int(tokens[1])
adm_id = int(tokens[2])
adm_time = datetime.strptime(tokens[3], "%Y-%m-%d %H:%M:%S")
adm_date_map[adm_id] = adm_time
if pid in pid_adm_map:
pid_adm_map[pid].append(adm_id)
else:
pid_adm_map[pid] = [adm_id]
infd.close()
# Create admission dx code mapping
print("Building admission-dxList mapping...")
adm_dx_map = {}
adm_dx_map_3digit = {}
infd = open(diagnosis_file, "r")
infd.readline()
for line in infd:
tokens = re.sub('"|\s|\n','',line).split(',')
adm_id = int(tokens[2])
dx_str = "D_" + convert_to_icd9(tokens[4][1:-1])
dx_str_3digit = "D_" + convert_to_3digit_icd9(tokens[4][1:-1])
if adm_id in adm_dx_map:
adm_dx_map[adm_id].append(dx_str)
else:
adm_dx_map[adm_id] = [dx_str]
if adm_id in adm_dx_map_3digit:
adm_dx_map_3digit[adm_id].append(dx_str_3digit)
else:
adm_dx_map_3digit[adm_id] = [dx_str_3digit]
infd.close()
# Create ordered visit mapping
print("Building pid-sortedVisits mapping...")
pid_seq_map = {}
pid_seq_map_3digit = {}
for pid, adm_id_list in pid_adm_map.items():
if len(adm_id_list) < 2:
continue
sorted_list = sorted(
[(adm_date_map[adm_id], adm_dx_map[adm_id]) for adm_id in adm_id_list]
)
pid_seq_map[pid] = sorted_list
sorted_list_3digit = sorted(
[
(adm_date_map[adm_id], adm_dx_map_3digit[adm_id])
for adm_id in adm_id_list
]
)
pid_seq_map_3digit[pid] = sorted_list_3digit
# Create sequences of IDs, dates, labels, and code sequences
print("Building pids, dates, mortality_labels, strSeqs...")
pids = []
dates = []
seqs = []
morts = []
for pid, visits in pid_seq_map.items():
pids.append(pid)
morts.append(pid_dod_map[pid])
seq = []
date = []
for visit in visits:
date.append(visit[0])
seq.append(visit[1])
dates.append(date)
seqs.append(seq)
# Create 3 digit ICD sequences
print("Building pids, dates, strSeqs for 3digit ICD9 code...")
seqs_3digit = []
for pid, visits in pid_seq_map_3digit.items():
seq = []
for visit in visits:
seq.append(visit[1])
seqs_3digit.append(seq)
# Collect code types
print("Converting strSeqs to intSeqs, and making types...")
types = {}
new_seqs = []
for patient in seqs:
new_patient = []
for visit in patient:
new_visit = []
for code in visit:
if code in types:
new_visit.append(types[code])
else:
types[code] = len(types)
new_visit.append(types[code])
new_patient.append(new_visit)
new_seqs.append(new_patient)
# Map code strings to integers
print("Converting strSeqs to intSeqs, and making types for 3digit ICD9 code...")
types_3digit = {}
new_seqs_3digit = []
for patient in seqs_3digit:
new_patient = []
for visit in patient:
new_visit = []
for code in set(visit):
if code in types_3digit:
new_visit.append(types_3digit[code])
else:
types_3digit[code] = len(types_3digit)
new_visit.append(types_3digit[code])
new_patient.append(new_visit)
new_seqs_3digit.append(new_patient)
# Compute time to today as to_event column
print("Making additional modifications to the data...")
today = datetime.strptime("2025-01-01", "%Y-%m-%d")
to_event = [[(today - date).days for date in patient] for patient in dates]
# Compute time of the day when the person was admitted as the numeric column of size 1
numerics = [
[[date.hour * 60 + date.minute - 720] for date in patient] for patient in dates
]
# Add this feature to dictionary but leave 1 index empty for PADDING
types["Time of visit"] = len(types) + 1
types_3digit["Time of visit"] = len(types_3digit) + 1
# Compute sorting indicies
sort_indicies = np.argsort(list(map(len, to_event)))
# Create the dataframes of data and sort them according to number of visits per patient
print("Building sorted dataframes...")
all_data = (
pd.DataFrame(
data={"codes": new_seqs, "to_event": to_event, "numerics": numerics},
columns=["codes", "to_event", "numerics"],
)
.iloc[sort_indicies]
.reset_index()
)
all_data_3digit = (
pd.DataFrame(
data={"codes": new_seqs_3digit, "to_event": to_event, "numerics": numerics},
columns=["codes", "to_event", "numerics"],
)
.iloc[sort_indicies]
.reset_index()
)
all_targets = (
pd.DataFrame(data={"target": morts}, columns=["target"])
.iloc[sort_indicies]
.reset_index()
)
# Create train test split
print("Creating train/test splits...")
data_train, data_test = train_test_split(
all_data, train_size=train_proportion, random_state=12345
)
data_train_3digit, data_test_3digit = train_test_split(
all_data_3digit, train_size=train_proportion, random_state=12345
)
target_train, target_test = train_test_split(
all_targets, train_size=train_proportion, random_state=12345
)
# Create reverse dictionary in index:code format
types = dict((v, k) for k, v in types.items())
types_3digit = dict((v, k) for k, v in types_3digit.items())
# Write out the data
print("Saving data...")
if not os.path.exists(out_directory):
os.makedirs(out_directory)
data_train.sort_index().to_pickle(out_directory + "/data_train.pkl")
data_test.sort_index().to_pickle(out_directory + "/data_test.pkl")
data_train_3digit.sort_index().to_pickle(out_directory + "/data_train_3digit.pkl")
data_test_3digit.sort_index().to_pickle(out_directory + "/data_test_3digit.pkl")
target_train.sort_index().to_pickle(out_directory + "/target_train.pkl")
target_test.sort_index().to_pickle(out_directory + "/target_test.pkl")
pickle.dump(types, open(out_directory + "/dictionary.pkl", "wb"), -1)
pickle.dump(types_3digit, open(out_directory + "/dictionary_3digit.pkl", "wb"), -1)