-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpsx_matrix.cpp
259 lines (225 loc) · 6.25 KB
/
psx_matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include "core/dktypes.h"
#include <nstd/Math.hpp>
#include "psx_math_types.h"
#include "isin.h"
#include "psx_matrix.h"
#include "Vector.h"
#define FIX_BIT 12
#define FIX_1 (1<<FIX_BIT)
#define FIX(a) ((a)>>FIX_BIT)
// Performs matrix multiplication
// m2 = m0 x m1
MATRIX* MulMatrix0(MATRIX* m0, MATRIX* m1, MATRIX* m2)
{
int vx, vy, vz;
MATRIX tmp;
if (m0 == m2)
tmp = *m0; m0 = &tmp;
vx = m1->m[0][0];
vy = m1->m[1][0];
vz = m1->m[2][0];
m2->m[0][0] = FIX(m0->m[0][0] * vx + m0->m[0][1] * vy + m0->m[0][2] * vz);
m2->m[1][0] = FIX(m0->m[1][0] * vx + m0->m[1][1] * vy + m0->m[1][2] * vz);
m2->m[2][0] = FIX(m0->m[2][0] * vx + m0->m[2][1] * vy + m0->m[2][2] * vz);
vx = m1->m[0][1];
vy = m1->m[1][1];
vz = m1->m[2][1];
m2->m[0][1] = FIX(m0->m[0][0] * vx + m0->m[0][1] * vy + m0->m[0][2] * vz);
m2->m[1][1] = FIX(m0->m[1][0] * vx + m0->m[1][1] * vy + m0->m[1][2] * vz);
m2->m[2][1] = FIX(m0->m[2][0] * vx + m0->m[2][1] * vy + m0->m[2][2] * vz);
vx = m1->m[0][2];
vy = m1->m[1][2];
vz = m1->m[2][2];
m2->m[0][2] = FIX(m0->m[0][0] * vx + m0->m[0][1] * vy + m0->m[0][2] * vz);
m2->m[1][2] = FIX(m0->m[1][0] * vx + m0->m[1][1] * vy + m0->m[1][2] * vz);
m2->m[2][2] = FIX(m0->m[2][0] * vx + m0->m[2][1] * vy + m0->m[2][2] * vz);
return m2;
}
#define APPLYMATRIX(m,v0,v1) {\
int vx = v0->vx;\
int vy = v0->vy;\
int vz = v0->vz;\
v1->vx = FIX(m->m[0][0]*vx + m->m[0][1]*vy + m->m[0][2]*vz );\
v1->vy = FIX(m->m[1][0]*vx + m->m[1][1]*vy + m->m[1][2]*vz );\
v1->vz = FIX(m->m[2][0]*vx + m->m[2][1]*vy + m->m[2][2]*vz );\
}
// Applies matrix rotation to vector
// v1 = m x v0
VECTOR_NOPAD* ApplyMatrix(MATRIX* m, SVECTOR_NOPAD* v0, VECTOR_NOPAD* v1)
{
APPLYMATRIX(m, v0, v1)
return v1;
}
// Applies matrix rotation to short vector
// v1 = m x v0
SVECTOR_NOPAD* ApplyMatrixSV(MATRIX* m, SVECTOR_NOPAD* v0, SVECTOR_NOPAD* v1)
{
APPLYMATRIX(m, v0, v1)
return v1;
}
// Applies matrix to long vector
// v1 = m x v0
VECTOR_NOPAD* ApplyMatrixLV(MATRIX* m, VECTOR_NOPAD* v0, VECTOR_NOPAD* v1)
{
APPLYMATRIX(m, v0, v1)
return v1;
}
// creates a rotation matrix
// m = [r->vx] x [r->vy] x [r->vz]
MATRIX* RotMatrix(SVECTOR_NOPAD* r, MATRIX* m)
{
int c0, c1, c2;
int s0, s1, s2;
int s2p0, s2m0, c2p0, c2m0;
int s2c0, s2s0, c2c0, c2s0;
c0 = icos(r->vx);
c1 = icos(r->vy);
c2 = icos(r->vz);
s0 = isin(r->vx);
s1 = isin(r->vy);
s2 = isin(r->vz);
s2p0 = isin(r->vz + r->vx);
s2m0 = isin(r->vz - r->vx);
c2p0 = icos(r->vz + r->vx);
c2m0 = icos(r->vz - r->vx);
s2c0 = (s2p0 + s2m0) / 2;
c2s0 = (s2p0 - s2m0) / 2;
s2s0 = (c2m0 - c2p0) / 2;
c2c0 = (c2m0 + c2p0) / 2;
m->m[0][0] = FIX(c2 * c1);
m->m[1][0] = s2c0 + FIX(c2s0 * s1);
m->m[2][0] = s2s0 - FIX(c2c0 * s1);
m->m[0][1] = -FIX(s2 * c1);
m->m[1][1] = c2c0 - FIX(s2s0 * s1);
m->m[2][1] = c2s0 + FIX(s2c0 * s1);
m->m[0][2] = s1;
m->m[1][2] = -FIX(c1 * s0);
m->m[2][2] = FIX(c1 * c0);
return m;
}
// rotates matrix by angle
// m = m * [r] x
MATRIX* RotMatrixX(long r, MATRIX* m)
{
int s0 = isin(r);
int c0 = icos(r);
int t1, t2;
t1 = m->m[1][0];
t2 = m->m[2][0];
m->m[1][0] = FIX(t1 * c0 - t2 * s0);
m->m[2][0] = FIX(t1 * s0 + t2 * c0);
t1 = m->m[1][1];
t2 = m->m[2][1];
m->m[1][1] = FIX(t1 * c0 - t2 * s0);
m->m[2][1] = FIX(t1 * s0 + t2 * c0);
t1 = m->m[1][2];
t2 = m->m[2][2];
m->m[1][2] = FIX(t1 * c0 - t2 * s0);
m->m[2][2] = FIX(t1 * s0 + t2 * c0);
return m;
}
// rotates matrix by angle
// m = m * [r] y
MATRIX* RotMatrixY(long r, MATRIX* m)
{
int s0 = isin(r);
int c0 = icos(r);
int t1, t2;
t1 = m->m[0][0];
t2 = m->m[2][0];
m->m[0][0] = FIX(t1 * c0 + t2 * s0);
m->m[2][0] = FIX(-t1 * s0 + t2 * c0);
t1 = m->m[0][1];
t2 = m->m[2][1];
m->m[0][1] = FIX(t1 * c0 + t2 * s0);
m->m[2][1] = FIX(-t1 * s0 + t2 * c0);
t1 = m->m[0][2];
t2 = m->m[2][2];
m->m[0][2] = FIX(t1 * c0 + t2 * s0);
m->m[2][2] = FIX(-t1 * s0 + t2 * c0);
return m;
}
// rotates matrix by angle
// m = m * [r] z
MATRIX* RotMatrixZ(long r, MATRIX* m)
{
int s0 = isin(r);
int c0 = icos(r);
int t1, t2;
t1 = m->m[0][0];
t2 = m->m[1][0];
m->m[0][0] = FIX(t1 * c0 - t2 * s0);
m->m[1][0] = FIX(t1 * s0 + t2 * c0);
t1 = m->m[0][1];
t2 = m->m[1][1];
m->m[0][0] = FIX(t1 * c0 - t2 * s0);
m->m[1][1] = FIX(t1 * s0 + t2 * c0);
t1 = m->m[0][2];
t2 = m->m[1][2];
m->m[0][2] = FIX(t1 * c0 - t2 * s0);
m->m[1][2] = FIX(t1 * s0 + t2 * c0);
return m;
}
// sets matrix translation
MATRIX* TransMatrix(MATRIX* m, VECTOR_NOPAD* v)
{
m->t[0] = v->vx;
m->t[1] = v->vy;
m->t[2] = v->vz;
return m;
}
// scales the matrix by arbitary value
MATRIX* ScaleMatrix(MATRIX* m, VECTOR_NOPAD* v)
{
m->m[0][0] = FIX(m->m[0][0] * v->vx);
m->m[0][1] = FIX(m->m[0][1] * v->vx);
m->m[0][2] = FIX(m->m[0][2] * v->vx);
m->m[1][0] = FIX(m->m[1][0] * v->vy);
m->m[1][1] = FIX(m->m[1][1] * v->vy);
m->m[1][2] = FIX(m->m[1][2] * v->vy);
m->m[2][0] = FIX(m->m[2][0] * v->vz);
m->m[2][1] = FIX(m->m[2][1] * v->vz);
m->m[2][2] = FIX(m->m[2][2] * v->vz);
return m;
}
//-------------------------------------------
// PSX GTE routines emulation
//-------------------------------------------
MATRIX _globmat;
VECTOR_NOPAD _vr0, _vr1, _vr2, _vr3;
VECTOR_NOPAD _mac;
SVECTOR_NOPAD _ir;
void gte_SetRotMatrix(const MATRIX* m)
{
_globmat.m[0][0] = m->m[0][0];
_globmat.m[0][1] = m->m[0][1];
_globmat.m[0][2] = m->m[0][2];
_globmat.m[1][0] = m->m[1][0];
_globmat.m[1][1] = m->m[1][1];
_globmat.m[1][2] = m->m[1][2];
_globmat.m[2][0] = m->m[2][0];
_globmat.m[2][1] = m->m[2][1];
_globmat.m[2][2] = m->m[2][2];
}
void gte_SetTransMatrix(const MATRIX* m)
{
_globmat.t[0] = m->t[0];
_globmat.t[1] = m->t[1];
_globmat.t[2] = m->t[2];
}
void gte_SetTransVector(const VECTOR_NOPAD* v)
{
_globmat.t[0] = v->vx;
_globmat.t[1] = v->vy;
_globmat.t[2] = v->vz;
}
// rotate vector by matrix
void GTE_RTV()
{
_mac.vx = ((int64)((int64)_globmat.t[0] << 12) + (_globmat.m[0][0] * _vr0.vx) + (_globmat.m[0][1] * _vr0.vy) + (_globmat.m[0][2] * _vr0.vz)) >> 12;
_mac.vy = ((int64)((int64)_globmat.t[1] << 12) + (_globmat.m[1][0] * _vr0.vx) + (_globmat.m[1][1] * _vr0.vy) + (_globmat.m[1][2] * _vr0.vz)) >> 12;
_mac.vz = ((int64)((int64)_globmat.t[2] << 12) + (_globmat.m[2][0] * _vr0.vx) + (_globmat.m[2][1] * _vr0.vy) + (_globmat.m[2][2] * _vr0.vz)) >> 12;
_ir.vx = clamp(_mac.vx, SHRT_MIN, SHRT_MAX);
_ir.vy = clamp(_mac.vy, SHRT_MIN, SHRT_MAX);
_ir.vz = clamp(_mac.vz, SHRT_MIN, SHRT_MAX);
}