-
-
Notifications
You must be signed in to change notification settings - Fork 430
/
Copy pathmotion_head.py
560 lines (490 loc) · 29.5 KB
/
motion_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#---------------------------------------------------------------------------------#
# UniAD: Planning-oriented Autonomous Driving (https://arxiv.org/abs/2212.10156) #
# Source code: https://github.com/OpenDriveLab/UniAD #
# Copyright (c) OpenDriveLab. All rights reserved. #
#---------------------------------------------------------------------------------#
import torch
import copy
from mmdet.models import HEADS
from mmcv.runner import force_fp32, auto_fp16
from projects.mmdet3d_plugin.models.utils.functional import (
bivariate_gaussian_activation,
norm_points,
pos2posemb2d,
anchor_coordinate_transform
)
from .motion_head_plugin.motion_utils import nonlinear_smoother
from .motion_head_plugin.base_motion_head import BaseMotionHead
@HEADS.register_module()
class MotionHead(BaseMotionHead):
"""
MotionHead module for a neural network, which predicts motion trajectories and is used in an autonomous driving task.
Args:
*args: Variable length argument list.
predict_steps (int): The number of steps to predict motion trajectories.
transformerlayers (dict): A dictionary defining the configuration of transformer layers.
bbox_coder: An instance of a bbox coder to be used for encoding/decoding boxes.
num_cls_fcs (int): The number of fully-connected layers in the classification branch.
bev_h (int): The height of the bird's-eye-view map.
bev_w (int): The width of the bird's-eye-view map.
embed_dims (int): The number of dimensions to use for the query and key vectors in transformer layers.
num_anchor (int): The number of anchor points.
det_layer_num (int): The number of layers in the transformer model.
group_id_list (list): A list of group IDs to use for grouping the classes.
pc_range: The range of the point cloud.
use_nonlinear_optimizer (bool): A boolean indicating whether to use a non-linear optimizer for training.
anchor_info_path (str): The path to the file containing the anchor information.
vehicle_id_list(list[int]): class id of vehicle class, used for filtering out non-vehicle objects
"""
def __init__(self,
*args,
predict_steps=12,
transformerlayers=None,
bbox_coder=None,
num_cls_fcs=2,
bev_h=30,
bev_w=30,
embed_dims=256,
num_anchor=6,
det_layer_num=6,
group_id_list=[],
pc_range=None,
use_nonlinear_optimizer=False,
anchor_info_path=None,
loss_traj=dict(),
num_classes=0,
vehicle_id_list=[0, 1, 2, 3, 4, 6, 7],
**kwargs):
super(MotionHead, self).__init__()
self.bev_h = bev_h
self.bev_w = bev_w
self.num_cls_fcs = num_cls_fcs - 1
self.num_reg_fcs = num_cls_fcs - 1
self.embed_dims = embed_dims
self.num_anchor = num_anchor
self.num_anchor_group = len(group_id_list)
# we merge the classes into groups for anchor assignment
self.cls2group = [0 for i in range(num_classes)]
for i, grouped_ids in enumerate(group_id_list):
for gid in grouped_ids:
self.cls2group[gid] = i
self.cls2group = torch.tensor(self.cls2group)
self.pc_range = pc_range
self.predict_steps = predict_steps
self.vehicle_id_list = vehicle_id_list
self.use_nonlinear_optimizer = use_nonlinear_optimizer
self._load_anchors(anchor_info_path)
self._build_loss(loss_traj)
self._build_layers(transformerlayers, det_layer_num)
self._init_layers()
def forward_train(self,
bev_embed,
gt_bboxes_3d,
gt_labels_3d,
gt_fut_traj=None,
gt_fut_traj_mask=None,
gt_sdc_fut_traj=None,
gt_sdc_fut_traj_mask=None,
outs_track={},
outs_seg={}
):
"""Forward function
Args:
bev_embed (Tensor): BEV feature map with the shape of [B, C, H, W].
gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
bboxes of each sample.
gt_labels_3d (list[torch.Tensor]): Labels of each sample.
img_metas (list[dict]): Meta information of each sample.
gt_fut_traj (list[torch.Tensor]): Ground truth future trajectory of each sample.
gt_fut_traj_mask (list[torch.Tensor]): Ground truth future trajectory mask of each sample.
gt_sdc_fut_traj (list[torch.Tensor]): Ground truth future trajectory of each sample.
gt_sdc_fut_traj_mask (list[torch.Tensor]): Ground truth future trajectory mask of each sample.
outs_track (dict): Outputs of track head.
outs_seg (dict): Outputs of seg head.
future_states (list[torch.Tensor]): Ground truth future states of each sample.
Returns:
dict: Losses of each branch.
"""
track_query = outs_track['track_query_embeddings'][None, None, ...] # num_dec, B, A_track, D
all_matched_idxes = [outs_track['track_query_matched_idxes']] #BxN
track_boxes = outs_track['track_bbox_results']
# cat sdc query/gt to the last
sdc_match_index = torch.zeros((1,), dtype=all_matched_idxes[0].dtype, device=all_matched_idxes[0].device)
sdc_match_index[0] = gt_fut_traj[0].shape[0]
all_matched_idxes = [torch.cat([all_matched_idxes[0], sdc_match_index], dim=0)]
gt_fut_traj[0] = torch.cat([gt_fut_traj[0], gt_sdc_fut_traj[0]], dim=0)
gt_fut_traj_mask[0] = torch.cat([gt_fut_traj_mask[0], gt_sdc_fut_traj_mask[0]], dim=0)
track_query = torch.cat([track_query, outs_track['sdc_embedding'][None, None, None, :]], dim=2)
sdc_track_boxes = outs_track['sdc_track_bbox_results']
track_boxes[0][0].tensor = torch.cat([track_boxes[0][0].tensor, sdc_track_boxes[0][0].tensor], dim=0)
track_boxes[0][1] = torch.cat([track_boxes[0][1], sdc_track_boxes[0][1]], dim=0)
track_boxes[0][2] = torch.cat([track_boxes[0][2], sdc_track_boxes[0][2]], dim=0)
track_boxes[0][3] = torch.cat([track_boxes[0][3], sdc_track_boxes[0][3]], dim=0)
memory, memory_mask, memory_pos, lane_query, _, lane_query_pos, hw_lvl = outs_seg['args_tuple']
outs_motion = self(bev_embed, track_query, lane_query, lane_query_pos, track_boxes)
loss_inputs = [gt_bboxes_3d, gt_fut_traj, gt_fut_traj_mask, outs_motion, all_matched_idxes, track_boxes]
losses = self.loss(*loss_inputs)
def filter_vehicle_query(outs_motion, all_matched_idxes, gt_labels_3d, vehicle_id_list):
query_label = gt_labels_3d[0][-1][all_matched_idxes[0]]
# select vehicle query according to vehicle_id_list
vehicle_mask = torch.zeros_like(query_label)
for veh_id in vehicle_id_list:
vehicle_mask |= query_label == veh_id
outs_motion['traj_query'] = outs_motion['traj_query'][:, :, vehicle_mask>0]
outs_motion['track_query'] = outs_motion['track_query'][:, vehicle_mask>0]
outs_motion['track_query_pos'] = outs_motion['track_query_pos'][:, vehicle_mask>0]
all_matched_idxes[0] = all_matched_idxes[0][vehicle_mask>0]
return outs_motion, all_matched_idxes
all_matched_idxes[0] = all_matched_idxes[0][:-1]
outs_motion['sdc_traj_query'] = outs_motion['traj_query'][:, :, -1] # [3, 1, 6, 256] [n_dec, b, n_mode, d]
outs_motion['sdc_track_query'] = outs_motion['track_query'][:, -1] # [1, 256] [b, d]
outs_motion['sdc_track_query_pos'] = outs_motion['track_query_pos'][:, -1] # [1, 256] [b, d]
outs_motion['traj_query'] = outs_motion['traj_query'][:, :, :-1] # [3, 1, 3, 6, 256] [n_dec, b, nq, n_mode, d]
outs_motion['track_query'] = outs_motion['track_query'][:, :-1] # [1, 3, 256] [b, nq, d]
outs_motion['track_query_pos'] = outs_motion['track_query_pos'][:, :-1] # [1, 3, 256] [b, nq, d]
outs_motion, all_matched_idxes = filter_vehicle_query(outs_motion, all_matched_idxes, gt_labels_3d, self.vehicle_id_list)
outs_motion['all_matched_idxes'] = all_matched_idxes
ret_dict = dict(losses=losses, outs_motion=outs_motion, track_boxes=track_boxes)
return ret_dict
def forward_test(self, bev_embed, outs_track={}, outs_seg={}):
"""Test function"""
track_query = outs_track['track_query_embeddings'][None, None, ...]
track_boxes = outs_track['track_bbox_results']
track_query = torch.cat([track_query, outs_track['sdc_embedding'][None, None, None, :]], dim=2)
sdc_track_boxes = outs_track['sdc_track_bbox_results']
track_boxes[0][0].tensor = torch.cat([track_boxes[0][0].tensor, sdc_track_boxes[0][0].tensor], dim=0)
track_boxes[0][1] = torch.cat([track_boxes[0][1], sdc_track_boxes[0][1]], dim=0)
track_boxes[0][2] = torch.cat([track_boxes[0][2], sdc_track_boxes[0][2]], dim=0)
track_boxes[0][3] = torch.cat([track_boxes[0][3], sdc_track_boxes[0][3]], dim=0)
memory, memory_mask, memory_pos, lane_query, _, lane_query_pos, hw_lvl = outs_seg['args_tuple']
outs_motion = self(bev_embed, track_query, lane_query, lane_query_pos, track_boxes)
traj_results = self.get_trajs(outs_motion, track_boxes)
bboxes, scores, labels, bbox_index, mask = track_boxes[0]
outs_motion['track_scores'] = scores[None, :]
labels[-1] = 0
def filter_vehicle_query(outs_motion, labels, vehicle_id_list):
if len(labels) < 1: # No other obj query except sdc query.
return None
# select vehicle query according to vehicle_id_list
vehicle_mask = torch.zeros_like(labels)
for veh_id in vehicle_id_list:
vehicle_mask |= labels == veh_id
outs_motion['traj_query'] = outs_motion['traj_query'][:, :, vehicle_mask>0]
outs_motion['track_query'] = outs_motion['track_query'][:, vehicle_mask>0]
outs_motion['track_query_pos'] = outs_motion['track_query_pos'][:, vehicle_mask>0]
outs_motion['track_scores'] = outs_motion['track_scores'][:, vehicle_mask>0]
return outs_motion
outs_motion = filter_vehicle_query(outs_motion, labels, self.vehicle_id_list)
# filter sdc query
outs_motion['sdc_traj_query'] = outs_motion['traj_query'][:, :, -1]
outs_motion['sdc_track_query'] = outs_motion['track_query'][:, -1]
outs_motion['sdc_track_query_pos'] = outs_motion['track_query_pos'][:, -1]
outs_motion['traj_query'] = outs_motion['traj_query'][:, :, :-1]
outs_motion['track_query'] = outs_motion['track_query'][:, :-1]
outs_motion['track_query_pos'] = outs_motion['track_query_pos'][:, :-1]
outs_motion['track_scores'] = outs_motion['track_scores'][:, :-1]
return traj_results, outs_motion
@auto_fp16(apply_to=('bev_embed', 'track_query', 'lane_query', 'lane_query_pos', 'lane_query_embed', 'prev_bev'))
def forward(self,
bev_embed,
track_query,
lane_query,
lane_query_pos,
track_bbox_results):
"""
Applies forward pass on the model for motion prediction using bird's eye view (BEV) embedding, track query, lane query, and track bounding box results.
Args:
bev_embed (torch.Tensor): A tensor of shape (h*w, B, D) representing the bird's eye view embedding.
track_query (torch.Tensor): A tensor of shape (B, num_dec, A_track, D) representing the track query.
lane_query (torch.Tensor): A tensor of shape (N, M_thing, D) representing the lane query.
lane_query_pos (torch.Tensor): A tensor of shape (N, M_thing, D) representing the position of the lane query.
track_bbox_results (List[torch.Tensor]): A list of tensors containing the tracking bounding box results for each image in the batch.
Returns:
dict: A dictionary containing the following keys and values:
- 'all_traj_scores': A tensor of shape (num_levels, B, A_track, num_points) with trajectory scores for each level.
- 'all_traj_preds': A tensor of shape (num_levels, B, A_track, num_points, num_future_steps, 2) with predicted trajectories for each level.
- 'valid_traj_masks': A tensor of shape (B, A_track) indicating the validity of trajectory masks.
- 'traj_query': A tensor containing intermediate states of the trajectory queries.
- 'track_query': A tensor containing the input track queries.
- 'track_query_pos': A tensor containing the positional embeddings of the track queries.
"""
dtype = track_query.dtype
device = track_query.device
num_groups = self.kmeans_anchors.shape[0]
# extract the last frame of the track query
track_query = track_query[:, -1]
# encode the center point of the track query
reference_points_track = self._extract_tracking_centers(
track_bbox_results, self.pc_range)
track_query_pos = self.boxes_query_embedding_layer(pos2posemb2d(reference_points_track.to(device))) # B, A, D
# construct the learnable query positional embedding
# split and stack according to groups
learnable_query_pos = self.learnable_motion_query_embedding.weight.to(dtype) # latent anchor (P*G, D)
learnable_query_pos = torch.stack(torch.split(learnable_query_pos, self.num_anchor, dim=0))
# construct the agent level/scene-level query positional embedding
# (num_groups, num_anchor, 12, 2)
# to incorporate the information of different groups and coordinates, and embed the headding and location information
agent_level_anchors = self.kmeans_anchors.to(dtype).to(device).view(num_groups, self.num_anchor, self.predict_steps, 2).detach()
scene_level_ego_anchors = anchor_coordinate_transform(agent_level_anchors, track_bbox_results, with_translation_transform=True) # B, A, G, P ,12 ,2
scene_level_offset_anchors = anchor_coordinate_transform(agent_level_anchors, track_bbox_results, with_translation_transform=False) # B, A, G, P ,12 ,2
agent_level_norm = norm_points(agent_level_anchors, self.pc_range)
scene_level_ego_norm = norm_points(scene_level_ego_anchors, self.pc_range)
scene_level_offset_norm = norm_points(scene_level_offset_anchors, self.pc_range)
# we only use the last point of the anchor
agent_level_embedding = self.agent_level_embedding_layer(
pos2posemb2d(agent_level_norm[..., -1, :])) # G, P, D
scene_level_ego_embedding = self.scene_level_ego_embedding_layer(
pos2posemb2d(scene_level_ego_norm[..., -1, :])) # B, A, G, P , D
scene_level_offset_embedding = self.scene_level_offset_embedding_layer(
pos2posemb2d(scene_level_offset_norm[..., -1, :])) # B, A, G, P , D
batch_size, num_agents = scene_level_ego_embedding.shape[:2]
agent_level_embedding = agent_level_embedding[None,None, ...].expand(batch_size, num_agents, -1, -1, -1)
learnable_embed = learnable_query_pos[None, None, ...].expand(batch_size, num_agents, -1, -1, -1)
# save for latter, anchors
# B, A, G, P ,12 ,2 -> B, A, P ,12 ,2
scene_level_offset_anchors = self.group_mode_query_pos(track_bbox_results, scene_level_offset_anchors)
# select class embedding
# B, A, G, P , D-> B, A, P , D
agent_level_embedding = self.group_mode_query_pos(
track_bbox_results, agent_level_embedding)
scene_level_ego_embedding = self.group_mode_query_pos(
track_bbox_results, scene_level_ego_embedding) # B, A, G, P , D-> B, A, P , D
# B, A, G, P , D -> B, A, P , D
scene_level_offset_embedding = self.group_mode_query_pos(
track_bbox_results, scene_level_offset_embedding)
learnable_embed = self.group_mode_query_pos(
track_bbox_results, learnable_embed)
init_reference = scene_level_offset_anchors.detach()
outputs_traj_scores = []
outputs_trajs = []
inter_states, inter_references = self.motionformer(
track_query, # B, A_track, D
lane_query, # B, M, D
track_query_pos=track_query_pos,
lane_query_pos=lane_query_pos,
track_bbox_results=track_bbox_results,
bev_embed=bev_embed,
reference_trajs=init_reference,
traj_reg_branches=self.traj_reg_branches,
traj_cls_branches=self.traj_cls_branches,
# anchor embeddings
agent_level_embedding=agent_level_embedding,
scene_level_ego_embedding=scene_level_ego_embedding,
scene_level_offset_embedding=scene_level_offset_embedding,
learnable_embed=learnable_embed,
# anchor positional embeddings layers
agent_level_embedding_layer=self.agent_level_embedding_layer,
scene_level_ego_embedding_layer=self.scene_level_ego_embedding_layer,
scene_level_offset_embedding_layer=self.scene_level_offset_embedding_layer,
spatial_shapes=torch.tensor(
[[self.bev_h, self.bev_w]], device=device),
level_start_index=torch.tensor([0], device=device))
for lvl in range(inter_states.shape[0]):
outputs_class = self.traj_cls_branches[lvl](inter_states[lvl])
tmp = self.traj_reg_branches[lvl](inter_states[lvl])
tmp = self.unflatten_traj(tmp)
# we use cumsum trick here to get the trajectory
tmp[..., :2] = torch.cumsum(tmp[..., :2], dim=3)
outputs_class = self.log_softmax(outputs_class.squeeze(3))
outputs_traj_scores.append(outputs_class)
for bs in range(tmp.shape[0]):
tmp[bs] = bivariate_gaussian_activation(tmp[bs])
outputs_trajs.append(tmp)
outputs_traj_scores = torch.stack(outputs_traj_scores)
outputs_trajs = torch.stack(outputs_trajs)
B, A_track, D = track_query.shape
valid_traj_masks = track_query.new_ones((B, A_track)) > 0
outs = {
'all_traj_scores': outputs_traj_scores,
'all_traj_preds': outputs_trajs,
'valid_traj_masks': valid_traj_masks,
'traj_query': inter_states,
'track_query': track_query,
'track_query_pos': track_query_pos,
}
return outs
def group_mode_query_pos(self, bbox_results, mode_query_pos):
"""
Group mode query positions based on the input bounding box results.
Args:
bbox_results (List[Tuple[torch.Tensor]]): A list of tuples containing the bounding box results for each image in the batch.
mode_query_pos (torch.Tensor): A tensor of shape (B, A, G, P, D) representing the mode query positions.
Returns:
torch.Tensor: A tensor of shape (B, A, P, D) representing the classified mode query positions.
"""
batch_size = len(bbox_results)
agent_num = mode_query_pos.shape[1]
batched_mode_query_pos = []
self.cls2group = self.cls2group.to(mode_query_pos.device)
# TODO: vectorize this
# group the embeddings based on the class
for i in range(batch_size):
bboxes, scores, labels, bbox_index, mask = bbox_results[i]
label = labels.to(mode_query_pos.device)
grouped_label = self.cls2group[label]
grouped_mode_query_pos = []
for j in range(agent_num):
grouped_mode_query_pos.append(
mode_query_pos[i, j, grouped_label[j]])
batched_mode_query_pos.append(torch.stack(grouped_mode_query_pos))
return torch.stack(batched_mode_query_pos)
@force_fp32(apply_to=('preds_dicts_motion'))
def loss(self,
gt_bboxes_3d,
gt_fut_traj,
gt_fut_traj_mask,
preds_dicts_motion,
all_matched_idxes,
track_bbox_results):
"""
Computes the loss function for the given ground truth and prediction dictionaries.
Args:
gt_bboxes_3d (List[torch.Tensor]): A list of tensors representing ground truth 3D bounding boxes for each image.
gt_fut_traj (torch.Tensor): A tensor representing the ground truth future trajectories.
gt_fut_traj_mask (torch.Tensor): A tensor representing the ground truth future trajectory masks.
preds_dicts_motion (Dict[str, torch.Tensor]): A dictionary containing motion-related prediction tensors.
all_matched_idxes (List[torch.Tensor]): A list of tensors containing the matched ground truth indices for each image in the batch.
track_bbox_results (List[Tuple[torch.Tensor]]): A list of tuples containing the tracking bounding box results for each image in the batch.
Returns:
dict[str, torch.Tensor]: A dictionary of loss components.
"""
# motion related predictions
all_traj_scores = preds_dicts_motion['all_traj_scores']
all_traj_preds = preds_dicts_motion['all_traj_preds']
num_dec_layers = len(all_traj_scores)
all_gt_fut_traj = [gt_fut_traj for _ in range(num_dec_layers)]
all_gt_fut_traj_mask = [
gt_fut_traj_mask for _ in range(num_dec_layers)]
losses_traj = []
gt_fut_traj_all, gt_fut_traj_mask_all = self.compute_matched_gt_traj(
all_gt_fut_traj[0], all_gt_fut_traj_mask[0], all_matched_idxes, track_bbox_results, gt_bboxes_3d)
for i in range(num_dec_layers):
loss_traj, l_class, l_reg, l_mindae, l_minfde, l_mr = self.compute_loss_traj(all_traj_scores[i], all_traj_preds[i],
gt_fut_traj_all, gt_fut_traj_mask_all, all_matched_idxes)
losses_traj.append(
(loss_traj, l_class, l_reg, l_mindae, l_minfde, l_mr))
loss_dict = dict()
loss_dict['loss_traj'] = losses_traj[-1][0]
loss_dict['l_class'] = losses_traj[-1][1]
loss_dict['l_reg'] = losses_traj[-1][2]
loss_dict['min_ade'] = losses_traj[-1][3]
loss_dict['min_fde'] = losses_traj[-1][4]
loss_dict['mr'] = losses_traj[-1][5]
# loss from other decoder layers
num_dec_layer = 0
for loss_traj_i in losses_traj[:-1]:
loss_dict[f'd{num_dec_layer}.loss_traj'] = loss_traj_i[0]
loss_dict[f'd{num_dec_layer}.l_class'] = loss_traj_i[1]
loss_dict[f'd{num_dec_layer}.l_reg'] = loss_traj_i[2]
loss_dict[f'd{num_dec_layer}.min_ade'] = loss_traj_i[3]
loss_dict[f'd{num_dec_layer}.min_fde'] = loss_traj_i[4]
loss_dict[f'd{num_dec_layer}.mr'] = loss_traj_i[5]
num_dec_layer += 1
return loss_dict
def compute_matched_gt_traj(self,
gt_fut_traj,
gt_fut_traj_mask,
all_matched_idxes,
track_bbox_results,
gt_bboxes_3d):
"""
Computes the matched ground truth trajectories for a batch of images based on matched indexes.
Args:
gt_fut_traj (torch.Tensor): Ground truth future trajectories of shape (num_imgs, num_objects, num_future_steps, 2).
gt_fut_traj_mask (torch.Tensor): Ground truth future trajectory masks of shape (num_imgs, num_objects, num_future_steps, 2).
all_matched_idxes (List[torch.Tensor]): A list of tensors containing the matched indexes for each image in the batch.
track_bbox_results (List[torch.Tensor]): A list of tensors containing the tracking bounding box results for each image in the batch.
gt_bboxes_3d (List[torch.Tensor]): A list of tensors containing the ground truth 3D bounding boxes for each image in the batch.
Returns:
torch.Tensor: A concatenated tensor of the matched ground truth future trajectories.
torch.Tensor: A concatenated tensor of the matched ground truth future trajectory masks.
"""
num_imgs = len(all_matched_idxes)
gt_fut_traj_all = []
gt_fut_traj_mask_all = []
for i in range(num_imgs):
matched_gt_idx = all_matched_idxes[i]
valid_traj_masks = matched_gt_idx >= 0
matched_gt_fut_traj = gt_fut_traj[i][matched_gt_idx][valid_traj_masks]
matched_gt_fut_traj_mask = gt_fut_traj_mask[i][matched_gt_idx][valid_traj_masks]
if self.use_nonlinear_optimizer:
# TODO: sdc query is not supported non-linear optimizer
bboxes = track_bbox_results[i][0].tensor[valid_traj_masks]
matched_gt_bboxes_3d = gt_bboxes_3d[i][-1].tensor[matched_gt_idx[:-1]
][valid_traj_masks[:-1]]
sdc_gt_fut_traj = matched_gt_fut_traj[-1:]
sdc_gt_fut_traj_mask = matched_gt_fut_traj_mask[-1:]
matched_gt_fut_traj = matched_gt_fut_traj[:-1]
matched_gt_fut_traj_mask = matched_gt_fut_traj_mask[:-1]
bboxes = bboxes[:-1]
matched_gt_fut_traj, matched_gt_fut_traj_mask = nonlinear_smoother(
matched_gt_bboxes_3d, matched_gt_fut_traj, matched_gt_fut_traj_mask, bboxes)
matched_gt_fut_traj = torch.cat(
[matched_gt_fut_traj, sdc_gt_fut_traj], dim=0)
matched_gt_fut_traj_mask = torch.cat(
[matched_gt_fut_traj_mask, sdc_gt_fut_traj_mask], dim=0)
matched_gt_fut_traj_mask = torch.all(
matched_gt_fut_traj_mask > 0, dim=-1)
gt_fut_traj_all.append(matched_gt_fut_traj)
gt_fut_traj_mask_all.append(matched_gt_fut_traj_mask)
gt_fut_traj_all = torch.cat(gt_fut_traj_all, dim=0)
gt_fut_traj_mask_all = torch.cat(gt_fut_traj_mask_all, dim=0)
return gt_fut_traj_all, gt_fut_traj_mask_all
def compute_loss_traj(self,
traj_scores,
traj_preds,
gt_fut_traj_all,
gt_fut_traj_mask_all,
all_matched_idxes):
"""
Computes the trajectory loss given the predicted trajectories, ground truth trajectories, and other relevant information.
Args:
traj_scores (torch.Tensor): A tensor representing the trajectory scores.
traj_preds (torch.Tensor): A tensor representing the predicted trajectories.
gt_fut_traj_all (torch.Tensor): A tensor representing the ground truth future trajectories.
gt_fut_traj_mask_all (torch.Tensor): A tensor representing the ground truth future trajectory masks.
all_matched_idxes (List[torch.Tensor]): A list of tensors containing the matched ground truth indices for each image in the batch.
Returns:
tuple: A tuple containing the total trajectory loss, classification loss, regression loss, minimum average displacement error, minimum final displacement error, and miss rate.
"""
num_imgs = traj_scores.size(0)
traj_prob_all = []
traj_preds_all = []
for i in range(num_imgs):
matched_gt_idx = all_matched_idxes[i]
valid_traj_masks = matched_gt_idx >= 0
# select valid and matched
batch_traj_prob = traj_scores[i, valid_traj_masks, :]
# (n_objs, n_modes, step, 5)
batch_traj_preds = traj_preds[i, valid_traj_masks, ...]
traj_prob_all.append(batch_traj_prob)
traj_preds_all.append(batch_traj_preds)
traj_prob_all = torch.cat(traj_prob_all, dim=0)
traj_preds_all = torch.cat(traj_preds_all, dim=0)
traj_loss, l_class, l_reg, l_minade, l_minfde, l_mr = self.loss_traj(
traj_prob_all, traj_preds_all, gt_fut_traj_all, gt_fut_traj_mask_all)
return traj_loss, l_class, l_reg, l_minade, l_minfde, l_mr
@force_fp32(apply_to=('preds_dicts'))
def get_trajs(self, preds_dicts, bbox_results):
"""
Generates trajectories from the prediction results, bounding box results.
Args:
preds_dicts (tuple[list[dict]]): A tuple containing lists of dictionaries with prediction results.
bbox_results (List[Tuple[torch.Tensor]]): A list of tuples containing the bounding box results for each image in the batch.
Returns:
List[dict]: A list of dictionaries containing decoded bounding boxes, scores, and labels after non-maximum suppression.
"""
num_samples = len(bbox_results)
num_layers = preds_dicts['all_traj_preds'].shape[0]
ret_list = []
for i in range(num_samples):
preds = dict()
for j in range(num_layers):
subfix = '_' + str(j) if j < (num_layers - 1) else ''
traj = preds_dicts['all_traj_preds'][j, i]
traj_scores = preds_dicts['all_traj_scores'][j, i]
traj_scores, traj = traj_scores.cpu(), traj.cpu()
preds['traj' + subfix] = traj
preds['traj_scores' + subfix] = traj_scores
ret_list.append(preds)
return ret_list