Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve VectorAt #8013

Merged
merged 26 commits into from
May 3, 2022
Merged

Improve VectorAt #8013

merged 26 commits into from
May 3, 2022

Conversation

daquexian
Copy link
Contributor

VectorAt 支持传入非常量引用:

JUST(VectorAt(vec, 1)) = 5;

Signed-off-by: daquexian <daquexian566@gmail.com>
@daquexian daquexian enabled auto-merge (squash) April 14, 2022 07:46
@oneflow-ci-bot oneflow-ci-bot requested review from oneflow-ci-bot and removed request for oneflow-ci-bot April 14, 2022 10:36
@oneflow-ci-bot oneflow-ci-bot requested review from oneflow-ci-bot and removed request for oneflow-ci-bot April 17, 2022 01:31
@oneflow-ci-bot oneflow-ci-bot requested review from oneflow-ci-bot and removed request for oneflow-ci-bot April 30, 2022 19:22
@github-actions
Copy link
Contributor

CI failed when running job: cuda-module. PR label automerge has been removed

@oneflow-ci-bot oneflow-ci-bot requested review from oneflow-ci-bot and removed request for oneflow-ci-bot May 1, 2022 21:33
@github-actions
Copy link
Contributor

github-actions bot commented May 1, 2022

CI failed when running job: cuda-module. PR label automerge has been removed

@github-actions github-actions bot removed the automerge label May 1, 2022
@github-actions
Copy link
Contributor

github-actions bot commented May 3, 2022

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/8013/

@github-actions
Copy link
Contributor

github-actions bot commented May 3, 2022

Speed stats:
GPU Name: GeForce GTX 1080 

✔️ OneFlow resnet50 time: 129.0ms (= 12904.8ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 143.2ms (= 14324.5ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.11 (= 143.2ms / 129.0ms)

OneFlow resnet50 time: 83.1ms (= 8305.7ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 84.3ms (= 8428.5ms / 100, input_shape=[8, 3, 224, 224])
❌ Relative speed: 1.01 (= 84.3ms / 83.1ms)

OneFlow resnet50 time: 52.8ms (= 10557.7ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 56.9ms (= 11383.7ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.08 (= 56.9ms / 52.8ms)

OneFlow resnet50 time: 42.7ms (= 8541.2ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 47.0ms (= 9397.7ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.10 (= 47.0ms / 42.7ms)

OneFlow resnet50 time: 39.7ms (= 7932.9ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 40.5ms (= 8105.7ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.02 (= 40.5ms / 39.7ms)

OneFlow swin dataloader time: 0.244s (= 48.773s / 200, num_workers=1)
PyTorch swin dataloader time: 0.150s (= 29.959s / 200, num_workers=1)
Relative speed: 0.614 (= 0.150s / 0.244s)

OneFlow swin dataloader time: 0.070s (= 13.910s / 200, num_workers=4)
PyTorch swin dataloader time: 0.041s (= 8.215s / 200, num_workers=4)
Relative speed: 0.591 (= 0.041s / 0.070s)

OneFlow swin dataloader time: 0.037s (= 7.366s / 200, num_workers=8)
PyTorch swin dataloader time: 0.022s (= 4.414s / 200, num_workers=8)
Relative speed: 0.599 (= 0.022s / 0.037s)

✔️ OneFlow resnet50 time: 135.8ms (= 13575.1ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 161.7ms (= 16166.9ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.19 (= 161.7ms / 135.8ms)

OneFlow resnet50 time: 90.7ms (= 9071.0ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 111.8ms (= 11183.9ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.23 (= 111.8ms / 90.7ms)

OneFlow resnet50 time: 64.4ms (= 12885.6ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 86.7ms (= 17332.3ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.35 (= 86.7ms / 64.4ms)

OneFlow resnet50 time: 52.5ms (= 10490.9ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 68.9ms (= 13771.2ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.31 (= 68.9ms / 52.5ms)

OneFlow resnet50 time: 47.1ms (= 9417.3ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 68.6ms (= 13715.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.46 (= 68.6ms / 47.1ms)

@github-actions
Copy link
Contributor

github-actions bot commented May 3, 2022

Speed stats:
GPU Name: NVIDIA GeForce GTX 1080 

❌ OneFlow resnet50 time: 129.5ms (= 12946.8ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 142.4ms (= 14239.7ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.10 (= 142.4ms / 129.5ms)

OneFlow resnet50 time: 83.2ms (= 8320.8ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 84.3ms (= 8430.1ms / 100, input_shape=[8, 3, 224, 224])
❌ Relative speed: 1.01 (= 84.3ms / 83.2ms)

OneFlow resnet50 time: 52.7ms (= 10545.2ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 63.4ms (= 12684.9ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.20 (= 63.4ms / 52.7ms)

OneFlow resnet50 time: 41.8ms (= 8355.3ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 44.2ms (= 8833.0ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.06 (= 44.2ms / 41.8ms)

OneFlow resnet50 time: 39.3ms (= 7859.3ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 42.9ms (= 8574.1ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.09 (= 42.9ms / 39.3ms)

OneFlow swin dataloader time: 0.418s (= 83.595s / 200, num_workers=1)
PyTorch swin dataloader time: 0.153s (= 30.606s / 200, num_workers=1)
Relative speed: 0.366 (= 0.153s / 0.418s)

OneFlow swin dataloader time: 0.067s (= 13.319s / 200, num_workers=4)
PyTorch swin dataloader time: 0.044s (= 8.713s / 200, num_workers=4)
Relative speed: 0.654 (= 0.044s / 0.067s)

OneFlow swin dataloader time: 0.037s (= 7.488s / 200, num_workers=8)
PyTorch swin dataloader time: 0.022s (= 4.306s / 200, num_workers=8)
Relative speed: 0.575 (= 0.022s / 0.037s)

❌ OneFlow resnet50 time: 144.8ms (= 14483.4ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 168.0ms (= 16800.1ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.16 (= 168.0ms / 144.8ms)

OneFlow resnet50 time: 97.0ms (= 9702.2ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 111.5ms (= 11149.4ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.15 (= 111.5ms / 97.0ms)

OneFlow resnet50 time: 77.0ms (= 15400.9ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 98.9ms (= 19779.6ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.28 (= 98.9ms / 77.0ms)

OneFlow resnet50 time: 65.0ms (= 13000.0ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 83.7ms (= 16732.7ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.29 (= 83.7ms / 65.0ms)

OneFlow resnet50 time: 56.7ms (= 11347.4ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 69.3ms (= 13852.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.22 (= 69.3ms / 56.7ms)

@daquexian daquexian merged commit 2d16c5b into master May 3, 2022
@daquexian daquexian deleted the improve_vectorat branch May 3, 2022 21:39
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants