forked from ggerganov/ggml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
1066 lines (825 loc) · 38.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ggml/ggml.h"
#include "common-ggml.h"
#include "common.h"
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <cinttypes>
#include <map>
#include <string>
#include <utility>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// no defaults for now
struct mpt_hparams {
int32_t d_model = 0;
int32_t max_seq_len = 0;
int32_t n_heads = 0;
int32_t n_layers = 0;
int32_t n_vocab = 0;
float alibi_bias_max = 0;
float clip_qkv = 0;
int32_t ftype = 0;
int32_t n_ctx = 0;
};
struct mpt_layer {
// pre normalization
struct ggml_tensor * ln_1_weight;
// attention
struct ggml_tensor * c_attn_wqkv_weight;
struct ggml_tensor * c_attn_q_ln_weight;
struct ggml_tensor * c_attn_k_ln_weight;
struct ggml_tensor * c_attn_out_proj_weight;
// post normalization
struct ggml_tensor * ln_2_weight;
// mlp
struct ggml_tensor * mlp_up_weight;
struct ggml_tensor * mlp_down_weight;
};
struct mpt_model {
mpt_hparams hparams;
struct ggml_tensor * wte_weight; // position embedding
struct ggml_tensor * ln_f; // language model head
std::vector<mpt_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
struct mpt_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t seed = -1; // RNG seed
int32_t n_predict = 200; // new tokens to predict
int32_t n_batch = 8; // batch size for prompt processing
int32_t n_ctx = 512;
std::string model = ""; // model path
std::string prompt = "";
std::string token_test = "";
bool perplexity = false;
// sampling parameters
int32_t top_k = 0;
float top_p = 1.0f;
float temp = 0.8f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.02f;
};
void mpt_print_usage(int /*argc*/, char ** argv, const mpt_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " load prompt from a file\n");
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
fprintf(stderr, " test tokenization\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d, 0 = n_vocab)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.2f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.2f)\n", params.temp);
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
bool mpt_params_parse(int argc, char ** argv, mpt_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = argv[++i];
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(argv[++i]);
} else if (arg == "--top_k") {
params.top_k = std::max(1, std::stoi(argv[++i]));
} else if (arg == "--top_p") {
params.top_p = std::stof(argv[++i]);
} else if (arg == "--temp") {
params.temp = std::stof(argv[++i]);
} else if (arg == "--repeat-last-n") {
params.repeat_last_n = std::stof(argv[++i]);
} else if (arg == "--repeat-penalty") {
params.repeat_penalty = std::stof(argv[++i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "-c" || arg == "--ctx-size") {
params.n_ctx = std::stoi(argv[++i]);
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-h" || arg == "--help") {
mpt_print_usage(argc, argv, params);
exit(0);
} else if (arg == "-f" || arg == "--file") {
if (++i > argc) {
fprintf(stderr, "Invalid file param");
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
break;
}
params.prompt.clear();
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-tt" || arg == "--token_test") {
params.token_test = argv[++i];
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
mpt_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
// load the model's weights from a file
bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.d_model, sizeof(hparams.d_model));
fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len));
fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads));
fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers));
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max));
fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx);
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: d_model = %d\n", __func__, hparams.d_model);
printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_heads = %d\n", __func__, hparams.n_heads);
printf("%s: n_layers = %d\n", __func__, hparams.n_layers);
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
// Convert token from utf-8
std::wstring word_multibytes = convert_to_wstring(word);
word.resize(word_multibytes.size());
for (size_t w = 0; w < word_multibytes.size(); w++) {
word[w] = uint8_t(word_multibytes[w]);
}
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit
// floats or quantized in order to save memory and also to speed up the
// computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
const auto & hparams = model.hparams;
const size_t n_ctx = hparams.n_ctx;
{
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm_f_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // attn_q_ln_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // attn_k_ln_weight
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
ctx_size += n_layer * (n_embd * 4 * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
ctx_size += (1 + 8 * n_layer) * 512; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.ln_f = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.wte.weight"] = model.wte_weight;
model.tensors["transformer.ln_f.weight"] = model.ln_f;
for (int i = 0; i < (int) n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd );
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd , 3 * n_embd );
layer.c_attn_q_ln_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd );
layer.c_attn_k_ln_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd );
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd , n_embd );
layer.ln_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd );
layer.mlp_up_weight = ggml_new_tensor_2d(ctx, wtype, n_embd , 4 * n_embd );
layer.mlp_down_weight = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd , n_embd );
// map by name
model.tensors["transformer.blocks." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.q_ln.weight"] = layer.c_attn_q_ln_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.k_ln.weight"] = layer.c_attn_k_ln_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".ln_2.weight"] = layer.ln_2_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".mlp.mlp_up.weight"] = layer.mlp_up_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".mlp.mlp_down.weight"] = layer.mlp_down_weight;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const int64_t n_mem = n_layer * n_ctx;
const int64_t n_elements = n_embd * n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
return false;
}
auto tensor = model.tensors[name];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr,
"%s: tensor '%s' has wrong shape in model file: got [%5d, "
"%5d], expected [%5d, %5d]\n",
__func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1],
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr,
"%s: tensor '%s' has wrong size in model file: got %zu, "
"expected %zu\n",
__func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
}
fin.close();
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past,
const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, bool logits_all, size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.d_model;
const int n_layer = hparams.n_layers;
const int n_head = hparams.n_heads;
const int n_vocab = hparams.n_vocab;
const int n_ctx = hparams.n_ctx;
const float eps = 1e-5f;
static size_t buf_size = 256u * 1024 * 1024;
static void * buf = malloc(buf_size);
// use 2 scratch buffers
// TODO: very hacky solution - reimplement in a more elegant way
static size_t scr0_size = 256u*1024*1024;
static void * scr0 = malloc(scr0_size);
static size_t scr1_size = 256u*1024*1024;
static void * scr1 = malloc(scr1_size);
if (mem_per_token > 0 && mem_per_token * N > buf_size) {
const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
// buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
// a = self.ln_1(x)
{
cur = ggml_norm(ctx0, inpL, eps);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_weight, cur), cur);
}
// self-attention
// b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
// attn_bias=attn_bias, attention_mask=attention_mask,
// is_causal=is_causal)
{
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
if (model.hparams.clip_qkv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv);
}
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
// Difference between MPT 1B and MPT 7B
//query = self.q_ln(query).to(dtype)
{
Qcur = ggml_norm(ctx0, Qcur, eps);
Qcur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_q_ln_weight, Qcur), Qcur);
}
//key = self.k_ln(key).to(dtype)
{
Kcur = ggml_norm(ctx0, Kcur, eps);
Kcur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_k_ln_weight, Kcur), Kcur);
}
// Difference ends
// store key and value to memory
{
struct ggml_tensor * k =
ggml_view_1d(ctx0, model.memory_k, N * n_embd,
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
struct ggml_tensor * v =
ggml_view_1d(ctx0, model.memory_v, N * n_embd,
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
// 2, 1, 3) [64, N, 12]
struct ggml_tensor * Q = ggml_permute(
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
// 3) [64, n_past + N, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
n_embd / n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
struct ggml_tensor * KQ_scaled_alibi =
ggml_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
// 2, 0, 3).contiguous() [n_past + N, 64, 12]
struct ggml_tensor * V_trans = ggml_cpy(
ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
n_embd / n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{ cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
}
inpL = ggml_add(ctx0, inpL, cur);
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
// m = self.ln_2(x)
{
cur = ggml_norm(ctx0, inpL, eps);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_weight, cur), cur);
}
// n = self.mlp(m)
{
cur = ggml_mul_mat(ctx0, model.layers[il].mlp_up_weight, cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0, model.layers[il].mlp_down_weight, cur);
}
// x = x + n
inpL = ggml_add(ctx0, inpL, cur);
}
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
// norm
{
inpL = ggml_norm(ctx0, inpL, eps);
// inpL = ln_f_g*inpL
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f, inpL), inpL);
}
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
// output embedding weight tied to input embedding
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
// logits -> probs
// inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
// std::cout << "Qcur" << std::endl;
// print_tensor(Qcur);
// if (n_past%100 == 0) {
// ggml_graph_print(&gf);
// ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot");
// }
if (logits_all) {
// return result for all tokens
embd_w.resize(n_vocab *N);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) , sizeof(float) * n_vocab * N);
} else {
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0) / N;
}
// printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
std::vector<float> softmax(const std::vector<float> & logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
const float logit = logits[i] - max_logit;
const float exp_logit = expf(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
return probs;
}
int perplexity(const mpt_params & params) {
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
printf("%s: n_threads = %d\n", __func__, params.n_threads);
printf("%s: n_batch = %d\n", __func__, params.n_batch);
printf("%s: n_ctx = %d\n", __func__, params.n_ctx);
printf("\n");
int64_t t_load_us = 0;
gpt_vocab vocab;
mpt_model model;
model.hparams.n_ctx = params.n_ctx;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!mpt_model_load(params.model, model, vocab)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return 1;
}
t_load_us = ggml_time_us() - t_start_us;
}
int64_t t_predict_us = 0;
std::vector<float> logits;
// tokenize the prompt
std::vector<int> embd_inp = ::gpt_tokenize(vocab, params.prompt);
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
// determine the required inference memory per token:
size_t mem_per_token = 0;
mpt_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token);
int count = 0;
const int n_chunk = embd_inp.size() / params.n_ctx;
const int n_vocab = model.hparams.n_vocab;
const int n_batch = params.n_batch;
double nll = 0.0;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.n_ctx;
const int end = start + params.n_ctx;
const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
std::vector<float> logits;
const auto t_start = std::chrono::high_resolution_clock::now();
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
std::vector<gpt_vocab::id> embd;
for(int p=0;p<batch_size;p++) {
embd.push_back( embd_inp[batch_start+p] );
}
std::vector<float> batch_logits;// = llama_get_logits(ctx);
const int64_t t_start_us = ggml_time_us();
if (!mpt_eval(model, params.n_threads, j * batch_size, embd, batch_logits, true, mem_per_token)) {
printf("%s: failed to evaluate model\n", __func__);
return 1;
}
t_predict_us += ggml_time_us() - t_start_us;
logits.insert(logits.end(), batch_logits.data(), batch_logits.data() + batch_size * n_vocab);
}
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
fprintf(stderr, "%d minutes\n", total_seconds / 60);
printf("\nChunk\tPPL cumulative\tPPL chunk\n");
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half of the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
double nllchunk = 0.0;
int countchunk = 0;
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits(
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
const float prob = softmax(tok_logits)[embd_inp[ start+ j + 1]];
nllchunk += -std::log(prob);
++countchunk;
}
nll += nllchunk;
count += countchunk;
// perplexity is e^(average negative log-likelihood)
printf("%d\t%.8lf\t%.8lf\n", i + 1, std::exp(nll / count), std::exp(nllchunk/countchunk) );
fflush(stdout);
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n\n");
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
printf("%s: eval time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / (n_chunk * params.n_ctx));
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
}
ggml_free(model.ctx);
return 0;
}
int main(int argc, char ** argv) {
mpt_params params;
if (mpt_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.perplexity) {
return perplexity(params);
}
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
if (params.seed < 0) {
params.seed = time(NULL);
}
if (params.n_predict < 0) {
params.n_predict = 0;
}
printf("%s: seed = %d\n", __func__, params.seed);
printf("%s: n_threads = %d\n", __func__, params.n_threads);
printf("%s: n_batch = %d\n", __func__, params.n_batch);
printf("%s: n_ctx = %d\n", __func__, params.n_ctx);
printf("%s: n_predict = %d\n\n", __func__, params.n_predict);
std::mt19937 rng(params.seed);
if (params.prompt.empty()) {
params.prompt = gpt_random_prompt(rng);
}
int64_t t_load_us = 0;
gpt_vocab vocab;
mpt_model model;
model.hparams.n_ctx = params.n_ctx;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!mpt_model_load(params.model, model, vocab)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return 1;
}
t_load_us = ggml_time_us() - t_start_us;
test_gpt_tokenizer(vocab, params.token_test);
}
if (params.top_k == 0) {
params.top_k = model.hparams.n_vocab;
}
if (params.repeat_last_n == -1) {
params.repeat_last_n = params.n_ctx;
}
printf("\n");
printf("%s: temp = %.3f\n", __func__, params.temp);
printf("%s: top_k = %d\n", __func__, params.top_k);
printf("%s: top_p = %.3f\n", __func__, params.top_p);
printf("%s: repeat_last_n = %d\n", __func__, params.repeat_last_n);
printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
std::vector<int32_t> last_n_tokens(params.n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
// tokenize the prompt
std::vector<int> embd_inp = ::gpt_tokenize(vocab, params.prompt);
printf("\n");
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (size_t i = 0; i < embd_inp.size(); i++) {
printf("%s: token[%zu] = %6d\n", __func__, i, embd_inp[i]);
}
printf("\n");
std::vector<gpt_vocab::id> embd;
std::vector<float> logits;
// determine the required inference memory per token:
size_t mem_per_token = 0;
mpt_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token);
int n_past = 0;
int n_consumed = 0;
int n_sampled = 0;
while (n_sampled < params.n_predict) {
// predict
if (embd.size() > 0) {
const int64_t t_start_us = ggml_time_us();
if (!mpt_eval(model, params.n_threads, n_past, embd, logits, false, mem_per_token)) {
printf("%s: failed to predict\n", __func__);
return 1;
}
t_predict_us += ggml_time_us() - t_start_us;
n_past += embd.size();
embd.clear();
}
if ((int)embd_inp.size() <= n_consumed) {
// sample next token
const int top_k = params.top_k;