-
Notifications
You must be signed in to change notification settings - Fork 109
/
tx_pool_test.go
2563 lines (2250 loc) · 92.6 KB
/
tx_pool_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"crypto/ecdsa"
"errors"
"fmt"
"io/ioutil"
"math/big"
"math/rand"
"os"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
)
var (
// testTxPoolConfig is a transaction pool configuration without stateful disk
// sideeffects used during testing.
testTxPoolConfig TxPoolConfig
// eip1559Config is a chain config with EIP-1559 enabled at block 0.
eip1559Config *params.ChainConfig
)
func init() {
testTxPoolConfig = DefaultTxPoolConfig
testTxPoolConfig.Journal = ""
cpy := *params.TestChainConfig
eip1559Config = &cpy
eip1559Config.BerlinBlock = common.Big0
eip1559Config.LondonBlock = common.Big0
}
type testBlockChain struct {
gasLimit uint64 // must be first field for 64 bit alignment (atomic access)
statedb *state.StateDB
chainHeadFeed *event.Feed
}
func (bc *testBlockChain) CurrentBlock() *types.Block {
return types.NewBlock(&types.Header{
GasLimit: atomic.LoadUint64(&bc.gasLimit),
}, nil, nil, nil, trie.NewStackTrie(nil))
}
func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
return bc.CurrentBlock()
}
func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) {
return bc.statedb, nil
}
func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
return bc.chainHeadFeed.Subscribe(ch)
}
func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction {
return pricedTransaction(nonce, gaslimit, big.NewInt(1), key)
}
func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
return tx
}
func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey, bytes uint64) *types.Transaction {
data := make([]byte, bytes)
rand.Read(data)
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(0), gaslimit, gasprice, data), types.HomesteadSigner{}, key)
return tx
}
func dynamicFeeTx(nonce uint64, gaslimit uint64, gasFee *big.Int, tip *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.SignNewTx(key, types.LatestSignerForChainID(params.TestChainConfig.ChainID), &types.DynamicFeeTx{
ChainID: params.TestChainConfig.ChainID,
Nonce: nonce,
GasTipCap: tip,
GasFeeCap: gasFee,
Gas: gaslimit,
To: &common.Address{},
Value: big.NewInt(100),
Data: nil,
AccessList: nil,
})
return tx
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
return setupTxPoolWithConfig(params.TestChainConfig)
}
func setupTxPoolWithConfig(config *params.ChainConfig) (*TxPool, *ecdsa.PrivateKey) {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{10000000, statedb, new(event.Feed)}
key, _ := crypto.GenerateKey()
pool := NewTxPool(testTxPoolConfig, config, blockchain)
// wait for the pool to initialize
<-pool.initDoneCh
return pool, key
}
// validateTxPoolInternals checks various consistency invariants within the pool.
func validateTxPoolInternals(pool *TxPool) error {
pool.mu.RLock()
defer pool.mu.RUnlock()
// Ensure the total transaction set is consistent with pending + queued
pending, queued := pool.stats()
if total := pool.all.Count(); total != pending+queued {
return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
}
pool.priced.Reheap()
priced, remote := pool.priced.urgent.Len()+pool.priced.floating.Len(), pool.all.RemoteCount()
if priced != remote {
return fmt.Errorf("total priced transaction count %d != %d", priced, remote)
}
// Ensure the next nonce to assign is the correct one
for addr, txs := range pool.pending {
// Find the last transaction
var last uint64
for nonce := range txs.txs.items {
if last < nonce {
last = nonce
}
}
if nonce := pool.pendingNonces.get(addr); nonce != last+1 {
return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1)
}
}
return nil
}
// validateEvents checks that the correct number of transaction addition events
// were fired on the pool's event feed.
func validateEvents(events chan NewTxsEvent, count int) error {
var received []*types.Transaction
for len(received) < count {
select {
case ev := <-events:
received = append(received, ev.Txs...)
case <-time.After(time.Second):
return fmt.Errorf("event #%d not fired", len(received))
}
}
if len(received) > count {
return fmt.Errorf("more than %d events fired: %v", count, received[count:])
}
select {
case ev := <-events:
return fmt.Errorf("more than %d events fired: %v", count, ev.Txs)
case <-time.After(50 * time.Millisecond):
// This branch should be "default", but it's a data race between goroutines,
// reading the event channel and pushing into it, so better wait a bit ensuring
// really nothing gets injected.
}
return nil
}
func deriveSender(tx *types.Transaction) (common.Address, error) {
return types.Sender(types.HomesteadSigner{}, tx)
}
type testChain struct {
*testBlockChain
address common.Address
trigger *bool
}
// testChain.State() is used multiple times to reset the pending state.
// when simulate is true it will create a state that indicates
// that tx0 and tx1 are included in the chain.
func (c *testChain) State() (*state.StateDB, error) {
// delay "state change" by one. The tx pool fetches the
// state multiple times and by delaying it a bit we simulate
// a state change between those fetches.
stdb := c.statedb
if *c.trigger {
c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
// simulate that the new head block included tx0 and tx1
c.statedb.SetNonce(c.address, 2)
c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether))
*c.trigger = false
}
return stdb, nil
}
// This test simulates a scenario where a new block is imported during a
// state reset and tests whether the pending state is in sync with the
// block head event that initiated the resetState().
func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
t.Parallel()
var (
key, _ = crypto.GenerateKey()
address = crypto.PubkeyToAddress(key.PublicKey)
statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
trigger = false
)
// setup pool with 2 transaction in it
statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
blockchain := &testChain{&testBlockChain{1000000000, statedb, new(event.Feed)}, address, &trigger}
tx0 := transaction(0, 100000, key)
tx1 := transaction(1, 100000, key)
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
defer pool.Stop()
nonce := pool.Nonce(address)
if nonce != 0 {
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
}
pool.AddRemotesSync([]*types.Transaction{tx0, tx1})
nonce = pool.Nonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
// trigger state change in the background
trigger = true
<-pool.requestReset(nil, nil)
nonce = pool.Nonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
}
func testAddBalance(pool *TxPool, addr common.Address, amount *big.Int) {
pool.mu.Lock()
pool.currentState.AddBalance(addr, amount)
pool.mu.Unlock()
}
func testSetNonce(pool *TxPool, addr common.Address, nonce uint64) {
pool.mu.Lock()
pool.currentState.SetNonce(addr, nonce)
pool.mu.Unlock()
}
func TestInvalidTransactions(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
tx := transaction(0, 100, key)
from, _ := deriveSender(tx)
testAddBalance(pool, from, big.NewInt(1))
if err := pool.AddRemote(tx); !errors.Is(err, ErrInsufficientFunds) {
t.Error("expected", ErrInsufficientFunds)
}
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice()))
testAddBalance(pool, from, balance)
if err := pool.AddRemote(tx); !errors.Is(err, ErrIntrinsicGas) {
t.Error("expected", ErrIntrinsicGas, "got", err)
}
testSetNonce(pool, from, 1)
testAddBalance(pool, from, big.NewInt(0xffffffffffffff))
tx = transaction(0, 100000, key)
if err := pool.AddRemote(tx); !errors.Is(err, ErrNonceTooLow) {
t.Error("expected", ErrNonceTooLow)
}
tx = transaction(1, 100000, key)
pool.gasPrice = big.NewInt(1000)
if err := pool.AddRemote(tx); err != ErrUnderpriced {
t.Error("expected", ErrUnderpriced, "got", err)
}
if err := pool.AddLocal(tx); err != nil {
t.Error("expected", nil, "got", err)
}
}
func TestTransactionQueue(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
tx := transaction(0, 100, key)
from, _ := deriveSender(tx)
testAddBalance(pool, from, big.NewInt(1000))
<-pool.requestReset(nil, nil)
pool.enqueueTx(tx.Hash(), tx, false, true)
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
if len(pool.pending) != 1 {
t.Error("expected valid txs to be 1 is", len(pool.pending))
}
tx = transaction(1, 100, key)
from, _ = deriveSender(tx)
testSetNonce(pool, from, 2)
pool.enqueueTx(tx.Hash(), tx, false, true)
<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
t.Error("expected transaction to be in tx pool")
}
if len(pool.queue) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue))
}
}
func TestTransactionQueue2(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
tx1 := transaction(0, 100, key)
tx2 := transaction(10, 100, key)
tx3 := transaction(11, 100, key)
from, _ := deriveSender(tx1)
testAddBalance(pool, from, big.NewInt(1000))
pool.reset(nil, nil)
pool.enqueueTx(tx1.Hash(), tx1, false, true)
pool.enqueueTx(tx2.Hash(), tx2, false, true)
pool.enqueueTx(tx3.Hash(), tx3, false, true)
pool.promoteExecutables([]common.Address{from})
if len(pool.pending) != 1 {
t.Error("expected pending length to be 1, got", len(pool.pending))
}
if pool.queue[from].Len() != 2 {
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
}
}
func TestTransactionNegativeValue(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key)
from, _ := deriveSender(tx)
testAddBalance(pool, from, big.NewInt(1))
if err := pool.AddRemote(tx); err != ErrNegativeValue {
t.Error("expected", ErrNegativeValue, "got", err)
}
}
func TestTransactionTipAboveFeeCap(t *testing.T) {
t.Parallel()
pool, key := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
tx := dynamicFeeTx(0, 100, big.NewInt(1), big.NewInt(2), key)
if err := pool.AddRemote(tx); err != ErrTipAboveFeeCap {
t.Error("expected", ErrTipAboveFeeCap, "got", err)
}
}
func TestTransactionVeryHighValues(t *testing.T) {
t.Parallel()
pool, key := setupTxPoolWithConfig(eip1559Config)
defer pool.Stop()
veryBigNumber := big.NewInt(1)
veryBigNumber.Lsh(veryBigNumber, 300)
tx := dynamicFeeTx(0, 100, big.NewInt(1), veryBigNumber, key)
if err := pool.AddRemote(tx); err != ErrTipVeryHigh {
t.Error("expected", ErrTipVeryHigh, "got", err)
}
tx2 := dynamicFeeTx(0, 100, veryBigNumber, big.NewInt(1), key)
if err := pool.AddRemote(tx2); err != ErrFeeCapVeryHigh {
t.Error("expected", ErrFeeCapVeryHigh, "got", err)
}
}
func TestTransactionChainFork(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.AddBalance(addr, big.NewInt(100000000000000))
pool.chain = &testBlockChain{1000000, statedb, new(event.Feed)}
<-pool.requestReset(nil, nil)
}
resetState()
tx := transaction(0, 100000, key)
if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err)
}
pool.removeTx(tx.Hash(), true)
// reset the pool's internal state
resetState()
if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err)
}
}
func TestTransactionDoubleNonce(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
statedb.AddBalance(addr, big.NewInt(100000000000000))
pool.chain = &testBlockChain{1000000, statedb, new(event.Feed)}
<-pool.requestReset(nil, nil)
}
resetState()
signer := types.HomesteadSigner{}
tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key)
tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key)
tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key)
// Add the first two transaction, ensure higher priced stays only
if replace, err := pool.add(tx1, false); err != nil || replace {
t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
}
if replace, err := pool.add(tx2, false); err != nil || !replace {
t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
}
<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Add the third transaction and ensure it's not saved (smaller price)
pool.add(tx3, false)
<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Ensure the total transaction count is correct
if pool.all.Count() != 1 {
t.Error("expected 1 total transactions, got", pool.all.Count())
}
}
func TestTransactionMissingNonce(t *testing.T) {
t.Parallel()
pool, key := setupTxPool()
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
testAddBalance(pool, addr, big.NewInt(100000000000000))
tx := transaction(1, 100000, key)
if _, err := pool.add(tx, false); err != nil {
t.Error("didn't expect error", err)
}
if len(pool.pending) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending))
}
if pool.queue[addr].Len() != 1 {
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
}
if pool.all.Count() != 1 {
t.Error("expected 1 total transactions, got", pool.all.Count())
}
}
func TestTransactionNonceRecovery(t *testing.T) {
t.Parallel()
const n = 10
pool, key := setupTxPool()
defer pool.Stop()
addr := crypto.PubkeyToAddress(key.PublicKey)
testSetNonce(pool, addr, n)
testAddBalance(pool, addr, big.NewInt(100000000000000))
<-pool.requestReset(nil, nil)
tx := transaction(n, 100000, key)
if err := pool.AddRemote(tx); err != nil {
t.Error(err)
}
// simulate some weird re-order of transactions and missing nonce(s)
testSetNonce(pool, addr, n-1)
<-pool.requestReset(nil, nil)
if fn := pool.Nonce(addr); fn != n-1 {
t.Errorf("expected nonce to be %d, got %d", n-1, fn)
}
}
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
t.Parallel()
// Create a test account and fund it
pool, key := setupTxPool()
defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey)
testAddBalance(pool, account, big.NewInt(1000))
// Add some pending and some queued transactions
var (
tx0 = transaction(0, 100, key)
tx1 = transaction(1, 200, key)
tx2 = transaction(2, 300, key)
tx10 = transaction(10, 100, key)
tx11 = transaction(11, 200, key)
tx12 = transaction(12, 300, key)
)
pool.all.Add(tx0, false)
pool.priced.Put(tx0, false)
pool.promoteTx(account, tx0.Hash(), tx0)
pool.all.Add(tx1, false)
pool.priced.Put(tx1, false)
pool.promoteTx(account, tx1.Hash(), tx1)
pool.all.Add(tx2, false)
pool.priced.Put(tx2, false)
pool.promoteTx(account, tx2.Hash(), tx2)
pool.enqueueTx(tx10.Hash(), tx10, false, true)
pool.enqueueTx(tx11.Hash(), tx11, false, true)
pool.enqueueTx(tx12.Hash(), tx12, false, true)
// Check that pre and post validations leave the pool as is
if pool.pending[account].Len() != 3 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
}
if pool.queue[account].Len() != 3 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
}
if pool.all.Count() != 6 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
}
<-pool.requestReset(nil, nil)
if pool.pending[account].Len() != 3 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
}
if pool.queue[account].Len() != 3 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
}
if pool.all.Count() != 6 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
}
// Reduce the balance of the account, and check that invalidated transactions are dropped
testAddBalance(pool, account, big.NewInt(-650))
<-pool.requestReset(nil, nil)
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11)
}
if pool.all.Count() != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4)
}
// Reduce the block gas limit, check that invalidated transactions are dropped
atomic.StoreUint64(&pool.chain.(*testBlockChain).gasLimit, 100)
<-pool.requestReset(nil, nil)
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
t.Errorf("over-gased pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
t.Errorf("over-gased queued transaction present: %v", tx11)
}
if pool.all.Count() != 2 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2)
}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcasting them.
func TestTransactionPostponing(t *testing.T) {
t.Parallel()
// Create the pool to test the postponing with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
defer pool.Stop()
// Create two test accounts to produce different gap profiles with
keys := make([]*ecdsa.PrivateKey, 2)
accs := make([]common.Address, len(keys))
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100))
}
// Add a batch consecutive pending transactions for validation
txs := []*types.Transaction{}
for i, key := range keys {
for j := 0; j < 100; j++ {
var tx *types.Transaction
if (i+j)%2 == 0 {
tx = transaction(uint64(j), 25000, key)
} else {
tx = transaction(uint64(j), 50000, key)
}
txs = append(txs, tx)
}
}
for i, err := range pool.AddRemotesSync(txs) {
if err != nil {
t.Fatalf("tx %d: failed to add transactions: %v", i, err)
}
}
// Check that pre and post validations leave the pool as is
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
}
if len(pool.queue) != 0 {
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
}
if pool.all.Count() != len(txs) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
}
<-pool.requestReset(nil, nil)
if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
}
if len(pool.queue) != 0 {
t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
}
if pool.all.Count() != len(txs) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
}
// Reduce the balance of the account, and check that transactions are reorganised
for _, addr := range accs {
testAddBalance(pool, addr, big.NewInt(-1))
}
<-pool.requestReset(nil, nil)
// The first account's first transaction remains valid, check that subsequent
// ones are either filtered out, or queued up for later.
if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0])
}
if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0])
}
for i, tx := range txs[1:100] {
if i%2 == 1 {
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
}
// The second account's first transaction got invalid, check that all transactions
// are either filtered out, or queued up for later.
if pool.pending[accs[1]] != nil {
t.Errorf("invalidated account still has pending transactions")
}
for i, tx := range txs[100:] {
if i%2 == 1 {
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx)
}
} else {
if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx)
}
}
}
if pool.all.Count() != len(txs)/2 {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2)
}
}
// Tests that if the transaction pool has both executable and non-executable
// transactions from an origin account, filling the nonce gap moves all queued
// ones into the pending pool.
func TestTransactionGapFilling(t *testing.T) {
t.Parallel()
// Create a test account and fund it
pool, key := setupTxPool()
defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey)
testAddBalance(pool, account, big.NewInt(1000000))
// Keep track of transaction events to ensure all executables get announced
events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
sub := pool.txFeed.Subscribe(events)
defer sub.Unsubscribe()
// Create a pending and a queued transaction with a nonce-gap in between
pool.AddRemotesSync([]*types.Transaction{
transaction(0, 100000, key),
transaction(2, 100000, key),
})
pending, queued := pool.Stats()
if pending != 1 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
}
if queued != 1 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
}
if err := validateEvents(events, 1); err != nil {
t.Fatalf("original event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Fill the nonce gap and ensure all transactions become pending
if err := pool.addRemoteSync(transaction(1, 100000, key)); err != nil {
t.Fatalf("failed to add gapped transaction: %v", err)
}
pending, queued = pool.Stats()
if pending != 3 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
}
if queued != 0 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
}
if err := validateEvents(events, 2); err != nil {
t.Fatalf("gap-filling event firing failed: %v", err)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueAccountLimiting(t *testing.T) {
t.Parallel()
// Create a test account and fund it
pool, key := setupTxPool()
defer pool.Stop()
account := crypto.PubkeyToAddress(key.PublicKey)
testAddBalance(pool, account, big.NewInt(1000000))
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != 0 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= testTxPoolConfig.AccountQueue {
if pool.queue[account].Len() != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
}
} else {
if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue)
}
}
}
if pool.all.Count() != int(testTxPoolConfig.AccountQueue) {
t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
//
// This logic should not hold for local transactions, unless the local tracking
// mechanism is disabled.
func TestTransactionQueueGlobalLimiting(t *testing.T) {
testTransactionQueueGlobalLimiting(t, false)
}
func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) {
testTransactionQueueGlobalLimiting(t, true)
}
func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
config := testTxPoolConfig
config.NoLocals = nolocals
config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible)
pool := NewTxPool(config, params.TestChainConfig, blockchain)
defer pool.Stop()
// Create a number of test accounts and fund them (last one will be the local)
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
testAddBalance(pool, crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
local := keys[len(keys)-1]
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := make(types.Transactions, 0, 3*config.GlobalQueue)
for len(txs) < cap(txs) {
key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account
addr := crypto.PubkeyToAddress(key.PublicKey)
txs = append(txs, transaction(nonces[addr]+1, 100000, key))
nonces[addr]++
}
// Import the batch and verify that limits have been enforced
pool.AddRemotesSync(txs)
queued := 0
for addr, list := range pool.queue {
if list.Len() > int(config.AccountQueue) {
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
}
queued += list.Len()
}
if queued > int(config.GlobalQueue) {
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
}
// Generate a batch of transactions from the local account and import them
txs = txs[:0]
for i := uint64(0); i < 3*config.GlobalQueue; i++ {
txs = append(txs, transaction(i+1, 100000, local))
}
pool.AddLocals(txs)
// If locals are disabled, the previous eviction algorithm should apply here too
if nolocals {
queued := 0
for addr, list := range pool.queue {
if list.Len() > int(config.AccountQueue) {
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
}
queued += list.Len()
}
if queued > int(config.GlobalQueue) {
t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
}
} else {
// Local exemptions are enabled, make sure the local account owned the queue
if len(pool.queue) != 1 {
t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1)
}
// Also ensure no local transactions are ever dropped, even if above global limits
if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue {
t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue)
}
}
}
// Tests that if an account remains idle for a prolonged amount of time, any
// non-executable transactions queued up are dropped to prevent wasting resources
// on shuffling them around.
//
// This logic should not hold for local transactions, unless the local tracking
// mechanism is disabled.
func TestTransactionQueueTimeLimiting(t *testing.T) {
testTransactionQueueTimeLimiting(t, false)
}
func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) {
testTransactionQueueTimeLimiting(t, true)
}
func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
// Reduce the eviction interval to a testable amount
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
evictionInterval = time.Millisecond * 100
// Create the pool to test the non-expiration enforcement
statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
blockchain := &testBlockChain{1000000, statedb, new(event.Feed)}
config := testTxPoolConfig
config.Lifetime = time.Second
config.NoLocals = nolocals
pool := NewTxPool(config, params.TestChainConfig, blockchain)
defer pool.Stop()
// Create two test accounts to ensure remotes expire but locals do not
local, _ := crypto.GenerateKey()
remote, _ := crypto.GenerateKey()
testAddBalance(pool, crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
testAddBalance(pool, crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
// Add the two transactions and ensure they both are queued up
if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
t.Fatalf("failed to add local transaction: %v", err)
}
if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil {
t.Fatalf("failed to add remote transaction: %v", err)
}
pending, queued := pool.Stats()
if pending != 0 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
}
if queued != 2 {
t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
}
if err := validateTxPoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
// Allow the eviction interval to run
time.Sleep(2 * evictionInterval)
// Transactions should not be evicted from the queue yet since lifetime duration has not passed
pending, queued = pool.Stats()
if pending != 0 {
t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)