-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
175 lines (140 loc) · 5.97 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
#####################################################
# Question_1-4
#####################################################
def dataStructureSearch(problem, frontier, heuristic = nullHeuristic):
"""
Algorithm to graph search.
Can be used for DFS, BFS, UCS and A* algorithm,
depending the frontier type that passed.
"""
# node format is (state, moves, cost)
node = problem.getStartState() # get the start state for the search problem.
path = []
cost = heuristic(node, problem)
frontier.push((node, path, cost))
explored = set()
while not frontier.isEmpty():
state, actions, cost = frontier.pop()
if state not in explored:
explored.add(state)
if problem.isGoalState(state):
return actions
else:
successors = problem.getSuccessors(state)
for nextState, nextAction, nextCost in successors:
child = nextState
child_path = actions + [nextAction]
child_cost = cost + nextCost
frontier.push((child, child_path, child_cost))
return []
#####################################################
# Question_1
#####################################################
def depthFirstSearch(problem):
""" Search the deepest nodes in the search tree first. """
return dataStructureSearch(problem, frontier = util.Stack())
#####################################################
# Question_2
#####################################################
def breadthFirstSearch(problem):
"""Search the shallowest nodes in the search tree first."""
return dataStructureSearch(problem, frontier = util.Queue())
#####################################################
# Question_3
#####################################################
def uniformCostSearch(problem):
"""Search the node of least total cost first."""
""" Creating a new Priority Queue where the priority is the cost of the route
to state n from the start state,
known as: g(n) """
# g(n) = node[-1] --> The cost of getting to the current state from the starting state.
priority_queue_by_cost = util.PriorityQueueWithFunction(lambda node: node[-1])
return dataStructureSearch(problem, frontier = priority_queue_by_cost)
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
#####################################################
# Question_4
#####################################################
def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
""" Creating a new Priority Queue where the priority is The estimated cost of
a route from the start state to a goal state passing through node n,
known as: f(n) = g(n) + h(n) """
# g(n) = node[-1] --> The cost of getting to the current state from the starting state.
# h(n) = heuristic(node[0],problem) --> The estimated cost of the cheapest route from state n to a goal state.
priority_queue_by_cost = util.PriorityQueueWithFunction(lambda node: node[-1] + heuristic(node[0], problem))
return dataStructureSearch(problem, frontier = priority_queue_by_cost)
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch