-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathBlobAnalysis.cpp
1010 lines (896 loc) · 38.8 KB
/
BlobAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Sequential blob analysis
// Reads parallel simulation data and performs connectivity analysis
// and averaging on a blob-by-blob basis
// James E. McClure 2014
#include <iostream>
#include <math.h>
#include "analysis/pmmc.h"
#include "analysis/analysis.h"
//#include "Domain.h"
#define NUM_AVERAGES 30
using namespace std;
inline void ReadCheckpoint(char *FILENAME, double *cDen, double *cDistEven, double *cDistOdd, int N)
{
int q,n;
double value;
ifstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
cDen[n] = value;
// if (n== 66276) printf("Density a = %f \n",value);
File.read((char*) &value, sizeof(value));
cDen[N+n] = value;
// if (n== 66276) printf("Density b = %f \n",value);
// Read the even distributions
for (q=0; q<10; q++){
File.read((char*) &value, sizeof(value));
cDistEven[q*N+n] = value;
// if (n== 66276) printf("dist even %i = %f \n",q,value);
}
// Read the odd distributions
for (q=0; q<9; q++){
File.read((char*) &value, sizeof(value));
cDistOdd[q*N+n] = value;
// if (n== 66276) printf("dist even %i = %f \n",q,value);
}
}
File.close();
}
inline void ReadBinaryFile(char *FILENAME, double *Data, int N)
{
int n;
double value;
ifstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
Data[n] = value;
}
File.close();
}
inline void SetPeriodicBC(DoubleArray &Scalar, int nx, int ny, int nz){
int i,j,k,in,jn,kn;
for (k=0; k<nz; k++){
for (j=0; j<ny; j++){
for (i=0; i<nx; i++){
in = i; jn=j; kn=k;
if (i==0) in = nx-2 ;
else if (i==nx-1) in = 0;
if (j==0) jn = ny-2;
else if (j==ny-1) jn = 0;
if (k==0) kn = nz-2;
else if (k==nz-1) kn = 0;
Scalar(i,j,k) = Scalar(in,jn,kn);
}
}
}
}
inline void ReadFromRank(char *FILENAME, DoubleArray &Phase, DoubleArray &Pressure, DoubleArray &Vel_x,
DoubleArray &Vel_y, DoubleArray &Vel_z, int nx, int ny, int nz, int iproc, int
jproc, int kproc)
{
int i,j,k,q,n,N;
int iglobal,jglobal,kglobal;
double value;
double denA,denB;
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
double vx,vy,vz;
N = nx*ny*nz;
double *Den, *DistEven, *DistOdd;
Den = new double[2*N];
DistEven = new double[10*N];
DistOdd = new double[9*N];
ifstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
Den[2*n] = value;
// if (n== 66276) printf("Density a = %f \n",value);
File.read((char*) &value, sizeof(value));
Den[2*n+1] = value;
// if (n== 66276) printf("Density b = %f \n",value);
// Read the even distributions
for (q=0; q<10; q++){
File.read((char*) &value, sizeof(value));
DistEven[q*N+n] = value;
}
// Read the odd distributions
for (q=0; q<9; q++){
File.read((char*) &value, sizeof(value));
DistOdd[q*N+n] = value;
}
}
File.close();
// Compute the phase field, pressure and velocity
for (k=1; k<nz-1; k++){
for (j=1; j<ny-1; j++){
for (i=1; i<nz-1; i++){
//........................................................................
n = k*nx*ny+j*nx+i;
//........................................................................
denA = Den[n];
denB = Den[N+n];
//........................................................................
f0 = DistEven[n];
f2 = DistEven[N+n];
f4 = DistEven[2*N+n];
f6 = DistEven[3*N+n];
f8 = DistEven[4*N+n];
f10 = DistEven[5*N+n];
f12 = DistEven[6*N+n];
f14 = DistEven[7*N+n];
f16 = DistEven[8*N+n];
f18 = DistEven[9*N+n];
//........................................................................
f1 = DistOdd[n];
f3 = DistOdd[1*N+n];
f5 = DistOdd[2*N+n];
f7 = DistOdd[3*N+n];
f9 = DistOdd[4*N+n];
f11 = DistOdd[5*N+n];
f13 = DistOdd[6*N+n];
f15 = DistOdd[7*N+n];
f17 = DistOdd[8*N+n];
//........................................................................
//.................Compute the pressure....................................
value = 0.3333333333333333*(f0+f2+f1+f4+f3+f6+f5+f8+f7+f10+f9+f12+f11+f14+f13+f16+f15+f18+f17);
//........................................................................
//.................Compute the velocity...................................
vx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
vy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
vz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
//........................................................................
// save values in global arrays
//........................................................................
iglobal = iproc*(nx-2)+i;
jglobal = jproc*(ny-2)+j;
kglobal = kproc*(nz-2)+k;
//........................................................................
Phase(iglobal,jglobal,kglobal) = (denA-denB)/(denA+denB);
Pressure(iglobal,jglobal,kglobal) = value;
Vel_x(iglobal,jglobal,kglobal) = vx;
Vel_y(iglobal,jglobal,kglobal) = vy;
Vel_z(iglobal,jglobal,kglobal) = vz;
//........................................................................
}
}
}
delete Den;
delete DistEven;
delete DistOdd;
}
int main(int argc, char **argv)
{
printf("----------------------------------------------------------\n");
printf("COMPUTING TCAT ANALYSIS FOR NON-WETTING PHASE FEATURES \n");
printf("----------------------------------------------------------\n");
//.......................................................................
int nprocx,nprocy,nprocz,nprocs;
int Nx, Ny, Nz;
int nx,ny,nz;
int nspheres;
double Lx,Ly,Lz;
//.......................................................................
int i,j,k,n,p,idx;
int iproc,jproc,kproc;
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
//.......................................................................
nx+=2;
ny+=2;
nz+=2;
nprocs = nprocx*nprocy*nprocz;
printf("Number of MPI ranks: %i \n", nprocs);
Nx = (nx-2)*nprocx+2;
Ny = (ny-2)*nprocy+2;
Nz = (nz-2)*nprocz+2;
printf("Full domain size: %i x %i x %i \n", Nx,Ny,Nz);
DoubleArray Phase(Nx,Ny,Nz);
DoubleArray SignDist(Nx,Ny,Nz);
DoubleArray Press(Nx,Ny,Nz);
DoubleArray Vel_x(Nx,Ny,Nz); // Velocity
DoubleArray Vel_y(Nx,Ny,Nz);
DoubleArray Vel_z(Nx,Ny,Nz);
DoubleArray dPdt(Nx,Ny,Nz);
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char BaseFilename[20];
sprintf(BaseFilename,"%s","dPdt.");
int proc,iglobal,kglobal,jglobal;
double * Temp;
Temp = new double[nx*ny*nz];
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
SignDist(i,j,k) = -100.0;
}
}
}
#ifdef GENTEST
// Fill the arrays with test data
double minValue;
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
SignDist(i,j,k) = 100.0;
minValue = sqrt((1.0*i-0.3*Nx)*(1.0*i-0.3*Nx)+(1.0*j-0.3*Ny)*(1.0*j-0.3*Ny)
+(1.0*k-0.3*Nz)*(1.0*k-0.3*Nz))-0.1*Nx;
if (sqrt((1.0*i-0.7*Nx)*(1.0*i-0.7*Nx)+(1.0*j-0.7*Ny)*(1.0*j-0.7*Ny)
+(1.0*k-0.7*Nz)*(1.0*k-0.7*Nz))-0.2*Nx < minValue){
minValue = sqrt((1.0*i-0.7*Nx)*(1.0*i-0.7*Nx)+(1.0*j-0.7*Ny)*(1.0*j-0.7*Ny)
+(1.0*k-0.7*Nz)*(1.0*k-0.7*Nz))-0.2*Nx;
}
if (sqrt((1.0*i-0.2*Nx)*(1.0*i-0.2*Nx)+(1.0*j-0.7*Ny)*(1.0*j-0.7*Ny)
+(1.0*k-0.6*Nz)*(1.0*k-0.6*Nz))-0.13*Nx < minValue){
minValue = sqrt((1.0*i-0.2*Nx)*(1.0*i-0.2*Nx)+(1.0*j-0.7*Ny)*(1.0*j-0.7*Ny)
+(1.0*k-0.6*Nz)*(1.0*k-0.6*Nz))-0.13*Nx;
}
if (sqrt((1.0*i-0.7*Nx)*(1.0*i-0.7*Nx)+(1.0*j-0.3*Ny)*(1.0*j-0.3*Ny)
+(1.0*k-0.7*Nz)*(1.0*k-0.7*Nz))-0.17*Nx < minValue){
minValue = sqrt((1.0*i-0.7*Nx)*(1.0*i-0.7*Nx)+(1.0*j-0.3*Ny)*(1.0*j-0.3*Ny)
+(1.0*k-0.7*Nz)*(1.0*k-0.7*Nz))-0.17*Nx;
}
if (minValue < -1.0) Phase(i,j,k) = 1.0;
else if (minValue < 1.0) Phase(i,j,k) = -minValue;
else Phase(i,j,k) = -1.0;
if (Phase(i,j,k) > 0.0){
Press(i,j,k) = 0.34;
}
else {
Press(i,j,k) = 0.32;
}
}
}
}
#else
// read the files and populate main arrays
for ( kproc=0; kproc<nprocz; kproc++){
for ( jproc=0; jproc<nprocy; jproc++){
for ( iproc=0; iproc<nprocx; iproc++){
proc = kproc*nprocx*nprocy + jproc*nprocx + iproc;
sprintf(LocalRankString,"%05d",proc);
sprintf(LocalRankFilename,"%s%s","dPdt.",LocalRankString);
// printf("Reading file %s \n",LocalRankFilename);
ReadBinaryFile(LocalRankFilename, Temp, nx*ny*nz);
for (k=1; k<nz-1; k++){
for (j=1; j<ny-1; j++){
for (i=1; i<nz-1; i++){
//........................................................................
n = k*nx*ny+j*nx+i;
//........................................................................
iglobal = iproc*(nx-2)+i;
jglobal = jproc*(ny-2)+j;
kglobal = kproc*(nz-2)+k;
//........................................................................
dPdt(iglobal,jglobal,kglobal) = Temp[n];
//........................................................................
}
}
}
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
// printf("Reading file %s \n",LocalRankFilename);
// printf("Sub-domain size: %i x %i x %i \n", nx,ny,nz);
ReadBinaryFile(LocalRankFilename, Temp, nx*ny*nz);
for (k=1; k<nz-1; k++){
for (j=1; j<ny-1; j++){
for (i=1; i<nz-1; i++){
//........................................................................
n = k*nx*ny+j*nx+i;
//........................................................................
iglobal = iproc*(nx-2)+i;
jglobal = jproc*(ny-2)+j;
kglobal = kproc*(nz-2)+k;
//........................................................................
SignDist(iglobal,jglobal,kglobal) = Temp[n];
//........................................................................
}
}
}
sprintf(LocalRankFilename,"%s%s","Restart.",LocalRankString);
ReadFromRank(LocalRankFilename,Phase,Press,Vel_x,Vel_y,Vel_z,nx,ny,nz,iproc,jproc,kproc);
sprintf(LocalRankFilename,"%s%s","Pressure.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Temp, nx*ny*nz);
for (k=1; k<nz-1; k++){
for (j=1; j<ny-1; j++){
for (i=1; i<nx-1; i++){
//........................................................................
n = k*nx*ny+j*nx+i;
//........................................................................
iglobal = iproc*(nx-2)+i;
jglobal = jproc*(ny-2)+j;
kglobal = kproc*(nz-2)+k;
//........................................................................
Press(iglobal,jglobal,kglobal) = Temp[n];
//........................................................................
}
}
}
sprintf(LocalRankFilename,"%s%s","Phase.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Temp, nx*ny*nz);
for (k=1; k<nz-1; k++){
for (j=1; j<ny-1; j++){
for (i=1; i<nx-1; i++){
//........................................................................
n = k*nx*ny+j*nx+i;
//........................................................................
iglobal = iproc*(nx-2)+i;
jglobal = jproc*(ny-2)+j;
kglobal = kproc*(nz-2)+k;
//........................................................................
Phase(iglobal,jglobal,kglobal) = Temp[n];
//........................................................................
}
}
}
}
}
}
printf("Read %i ranks of %s \n",nprocs,BaseFilename);
#endif
delete Temp;
DoubleArray MeanCurvature(Nx,Ny,Nz);
DoubleArray GaussCurvature(Nx,Ny,Nz);
DoubleArray SignDist_x(Nx,Ny,Nz); // Gradient of the signed distance
DoubleArray SignDist_y(Nx,Ny,Nz);
DoubleArray SignDist_z(Nx,Ny,Nz);
DoubleArray Phase_x(Nx,Ny,Nz); // Gradient of the phase indicator field
DoubleArray Phase_y(Nx,Ny,Nz);
DoubleArray Phase_z(Nx,Ny,Nz);
SetPeriodicBC(SignDist, Nx, Ny, Nz);
SetPeriodicBC(Phase, Nx, Ny, Nz);
SetPeriodicBC(Press, Nx, Ny, Nz);
//...........................................................................
// Compute the gradients of the phase indicator and signed distance fields
//...........................................................................
pmmc_MeshGradient(Phase,Phase_x,Phase_y,Phase_z,Nx,Ny,Nz);
pmmc_MeshGradient(SignDist,SignDist_x,SignDist_y,SignDist_z,Nx,Ny,Nz);
//...........................................................................
// Compute the mesh curvature of the phase indicator field
pmmc_MeshCurvature(Phase, MeanCurvature, GaussCurvature, Nx, Ny, Nz);
//...........................................................................
SetPeriodicBC(MeanCurvature, Nx, Ny, Nz);
SetPeriodicBC(GaussCurvature, Nx, Ny, Nz);
SetPeriodicBC(SignDist_x, Nx, Ny, Nz);
SetPeriodicBC(SignDist_y, Nx, Ny, Nz);
SetPeriodicBC(SignDist_z, Nx, Ny, Nz);
SetPeriodicBC(Phase_x, Nx, Ny, Nz);
SetPeriodicBC(Phase_y, Nx, Ny, Nz);
SetPeriodicBC(Phase_z, Nx, Ny, Nz);
/* for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
if (i==0) SignDist(i,j,k) = -2.0;
if (j==0) SignDist(i,j,k) = -2.0;
if (k==0) SignDist(i,j,k) = -2.0;
if (i==Nx-1) SignDist(i,j,k) = -2.0;
if (j==Ny-1) SignDist(i,j,k) = -2.0;
if (k==Nz-1) SignDist(i,j,k) = -2.0;
}
}
}
*/
FILE *PHASE = fopen("Phase.dat","wb");
fwrite(Phase.data(),8,Nx*Ny*Nz,PHASE);
fclose(PHASE);
// Compute the porosity
double porosity=0.0;
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
if (SignDist(i,j,k) > 0.0){
porosity += 1.0;
}
}
}
}
porosity /= (Nx*Ny*Nz*1.0);
printf("Media porosity is %f \n",porosity);
/* ****************************************************************
VARIABLES FOR THE PMMC ALGORITHM
****************************************************************** */
//...........................................................................
// Averaging variables
//...........................................................................
double awn,ans,aws,lwns,nwp_volume;
double sw,vol_n,vol_w,paw,pan;
double efawns,Jwn,Kwn;
double trawn,trJwn,trRwn;
double As,dummy;
// double dEs,dAwn,dAns; // Global surface energy (calculated by rank=0)
// bool add=1; // Set to false if any corners contain nw-phase ( F > fluid_isovalue)
int n_nw_pts=0,n_ns_pts=0,n_ws_pts=0,n_nws_pts=0;
int n_nw_tris=0, n_ns_tris=0, n_ws_tris=0, n_nws_seg=0;
//double s,s1,s2,s3; // Triangle sides (lengths)
Point A,B,C,P;
// double area;
int cube[8][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,1},{1,0,1},{0,1,1},{1,1,1}}; // cube corners
// int count_in=0,count_out=0;
// int nodx,nody,nodz;
// initialize lists for vertices for surfaces, common line
DTMutableList<Point> nw_pts(20);
DTMutableList<Point> ns_pts(20);
DTMutableList<Point> ws_pts(20);
DTMutableList<Point> nws_pts(20);
// initialize triangle lists for surfaces
IntArray nw_tris(3,20);
IntArray ns_tris(3,20);
IntArray ws_tris(3,20);
// initialize list for line segments
IntArray nws_seg(2,20);
DTMutableList<Point> tmp(20);
// Initialize arrays for local solid surface
DTMutableList<Point> local_sol_pts(20);
int n_local_sol_pts = 0;
IntArray local_sol_tris(3,18);
int n_local_sol_tris;
DoubleArray values(20);
DTMutableList<Point> local_nws_pts(20);
int n_local_nws_pts;
DoubleArray CubeValues(2,2,2);
DoubleArray Values(20);
DoubleArray ContactAngle(20);
DoubleArray Curvature(20);
DoubleArray DistValues(20);
DoubleArray InterfaceSpeed(20);
DoubleArray NormalVector(60);
DoubleArray van(3);
DoubleArray vaw(3);
DoubleArray vawn(3);
DoubleArray Gwn(6);
DoubleArray Gns(6);
DoubleArray Gws(6);
//...........................................................................
printf("Execute blob identification algorithm... \n");
/* ****************************************************************
IDENTIFY ALL BLOBS: F > vF, S > vS
****************************************************************** */
double vF=0.0;
double vS=0.0;
double trimdist=1.0;
// Compute the number of blobs and create the local blob ids
IntArray LocalBlobID;
int nblobs = ComputeLocalBlobIDs(Phase,SignDist,vF,vS,LocalBlobID,true);
// Compute the cells in each blob
IntArray b(nblobs); // number of nodes in each blob
IntArray blobs(3,Nx*Ny*Nz); // The indicies for the cells in each blob
b.fill(0);
blobs.fill(0);
int ncubes = 0;
for (int bb=0; bb<nblobs; bb++) {
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
if ( LocalBlobID(i,j,k)==bb ) {
b(bb)++;
blobs(0,ncubes) = i;
blobs(1,ncubes) = j;
blobs(2,ncubes) = k;
ncubes++;
}
}
}
}
}
b.resize(ncubes);
DoubleArray BlobAverages(NUM_AVERAGES,nblobs);
// Map the signed distance for the analysis
for (i=0; i<Nx*Ny*Nz; i++) SignDist(i) -= (1.0);
// Compute the porosity
porosity=0.0;
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
if (SignDist(i,j,k) > 0.0){
porosity += 1.0;
}
}
}
}
porosity /= (Nx*Ny*Nz*1.0);
printf("Media porosity is %f \n",porosity);
/* ****************************************************************
RUN TCAT AVERAGING ON EACH BLOB
****************************************************************** */
int n_nw_tris_beg, n_ns_tris_beg, n_ws_tris_beg, n_nws_seg_beg;
int start=0,finish;
int a,c;
printf("-----------------------------------------------\n");
printf("Computing TCAT averages based on connectivity \n");
printf("The number of non-wetting phase features is %i \n",nblobs-1);
printf("-----------------------------------------------\n");
// Wetting phase averages assume global connectivity
As = 0.0;
vol_w = 0.0;
paw = 0.0;
aws = 0.0;
vaw(0) = vaw(1) = vaw(2) = 0.0;
Gws(0) = Gws(1) = Gws(2) = 0.0;
Gws(3) = Gws(4) = Gws(5) = 0.0;
// Don't compute the last blob unless specified
// the last blob is the entire wetting phase
// nblobs -=1;
#ifdef WP
nblobs+=1;
#endif
for (a=0;a<nblobs;a++){
finish = start+b(a);
/* ****************************************************************
RUN PMMC ON EACH BLOB
****************************************************************** */
// Store beginning points for surfaces for blob p
n_nw_tris_beg = n_nw_tris;
n_ns_tris_beg = n_ns_tris;
n_ws_tris_beg = n_ws_tris;
n_nws_seg_beg = n_nws_seg;
// Loop over all cubes
nwp_volume = 0.0;
// Compute phase averages
vol_n =0.0;
pan = 0.0;
awn = ans = lwns = 0.0;
van(0) = van(1) = van(2) = 0.0;
vawn(0) = vawn(1) = vawn(2) = 0.0;
Gwn(0) = Gwn(1) = Gwn(2) = 0.0;
Gwn(3) = Gwn(4) = Gwn(5) = 0.0;
Gns(0) = Gns(1) = Gns(2) = 0.0;
Gns(3) = Gns(4) = Gns(5) = 0.0;
Jwn = Kwn = efawns = 0.0;
trJwn = trawn = trRwn = 0.0;
for (c=start;c<finish;c++){
// Get cube from the list
i = blobs(0,c);
j = blobs(1,c);
k = blobs(2,c);
// Use the cube to compute volume averages
for (p=0;p<8;p++){
if ( SignDist(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0 ){
n = i+cube[p][0] + Nx*(j+cube[p][1]) + Nx*Ny*(k+cube[p][2]);
// Compute the non-wetting phase volume contribution
if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0 )
nwp_volume += 0.125;
// volume averages over the non-wetting phase
if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0.99 ){
// volume the excludes the interfacial region
vol_n += 0.125;
// pressure
pan += 0.125*Press(n);
// velocity
van(0) += 0.125*Vel_x(n);
van(1) += 0.125*Vel_y(n);
van(2) += 0.125*Vel_z(n);
}
// volume averages over the wetting phase
if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) < -0.99 ){
// volume the excludes the interfacial region
vol_w += 0.125;
// pressure
paw += 0.125*Press(n);
// velocity
vaw(0) += 0.125*Vel_x(n);
vaw(1) += 0.125*Vel_y(n);
vaw(2) += 0.125*Vel_z(n);
}
}
}
// Interface and common curve averages
n_local_sol_tris = 0;
n_local_sol_pts = 0;
n_local_nws_pts = 0;
//...........................................................................
// Construct the interfaces and common curve
pmmc_ConstructLocalCube(SignDist, Phase, vS, vF,
nw_pts, nw_tris, values, ns_pts, ns_tris, ws_pts, ws_tris,
local_nws_pts, nws_pts, nws_seg, local_sol_pts, local_sol_tris,
n_local_sol_tris, n_local_sol_pts, n_nw_pts, n_nw_tris,
n_ws_pts, n_ws_tris, n_ns_tris, n_ns_pts, n_local_nws_pts, n_nws_pts, n_nws_seg,
i, j, k, Nx, Ny, Nz);
// Integrate the contact angle
efawns += pmmc_CubeContactAngle(CubeValues,Values,Phase_x,Phase_y,Phase_z,SignDist_x,SignDist_y,SignDist_z,
local_nws_pts,i,j,k,n_local_nws_pts);
// Integrate the mean curvature
Jwn += pmmc_CubeSurfaceInterpValue(CubeValues,MeanCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
Kwn += pmmc_CubeSurfaceInterpValue(CubeValues,GaussCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
// Integrate the trimmed mean curvature (hard-coded to use a distance of 4 pixels)
pmmc_CubeTrimSurfaceInterpValues(CubeValues,MeanCurvature,SignDist,nw_pts,nw_tris,Values,DistValues,
i,j,k,n_nw_pts,n_nw_tris,trimdist,trawn,trJwn);
pmmc_CubeTrimSurfaceInterpInverseValues(CubeValues,MeanCurvature,SignDist,nw_pts,nw_tris,Values,DistValues,
i,j,k,n_nw_pts,n_nw_tris,trimdist,dummy,trRwn);
// Compute the normal speed of the interface
pmmc_InterfaceSpeed(dPdt, Phase_x, Phase_y, Phase_z, CubeValues, nw_pts, nw_tris,
NormalVector, InterfaceSpeed, vawn, i, j, k, n_nw_pts, n_nw_tris);
As += pmmc_CubeSurfaceArea(local_sol_pts,local_sol_tris,n_local_sol_tris);
// Compute the surface orientation and the interfacial area
awn += pmmc_CubeSurfaceOrientation(Gwn,nw_pts,nw_tris,n_nw_tris);
ans += pmmc_CubeSurfaceOrientation(Gns,ns_pts,ns_tris,n_ns_tris);
aws += pmmc_CubeSurfaceOrientation(Gws,ws_pts,ws_tris,n_ws_tris);
lwns += pmmc_CubeCurveLength(local_nws_pts,n_local_nws_pts);
//...........................................................................
//*******************************************************************
// Reset the triangle counts to zero
n_nw_pts=0,n_ns_pts=0,n_ws_pts=0,n_nws_pts=0;
n_nw_tris=0, n_ns_tris=0, n_ws_tris=0, n_nws_seg=0;
n_nw_tris_beg = n_nw_tris;
n_ns_tris_beg = n_ns_tris;
n_ws_tris_beg = n_ws_tris;
n_nws_seg_beg = n_nws_seg;
//*******************************************************************
}
start = finish;
if (a < nblobs-1){
if (vol_n > 0.0){
pan /= vol_n;
for (i=0;i<3;i++) van(i) /= vol_n;
}
if (awn > 0.0){
Jwn /= awn;
Kwn /= awn;
for (i=0;i<3;i++) vawn(i) /= awn;
for (i=0;i<6;i++) Gwn(i) /= awn;
}
if (lwns > 0.0){
efawns /= lwns;
}
if (ans > 0.0){
for (i=0;i<6;i++) Gns(i) /= ans;
}
if (trawn > 0.0){
trJwn /= trawn;
}
BlobAverages(0,a) = nwp_volume;
BlobAverages(1,a) = pan;
BlobAverages(2,a) = awn;
BlobAverages(3,a) = ans;
BlobAverages(4,a) = Jwn;
BlobAverages(5,a) = Kwn;
BlobAverages(6,a) = lwns;
BlobAverages(7,a) = efawns;
BlobAverages(8,a) = van(0);
BlobAverages(9,a) = van(1);
BlobAverages(10,a) = van(2);
BlobAverages(11,a) = vawn(0);
BlobAverages(12,a) = vawn(1);
BlobAverages(13,a) = vawn(2);
BlobAverages(14,a) = Gwn(0);
BlobAverages(15,a) = Gwn(1);
BlobAverages(16,a) = Gwn(2);
BlobAverages(17,a) = Gwn(3);
BlobAverages(18,a) = Gwn(4);
BlobAverages(19,a) = Gwn(5);
BlobAverages(20,a) = Gns(0);
BlobAverages(21,a) = Gns(1);
BlobAverages(22,a) = Gns(2);
BlobAverages(23,a) = Gns(3);
BlobAverages(24,a) = Gns(4);
BlobAverages(25,a) = Gns(5);
BlobAverages(26,a) = trawn;
BlobAverages(27,a) = trJwn;
BlobAverages(28,a) = vol_n;
BlobAverages(29,a) = trRwn;
printf("Computed TCAT averages for feature = %i \n", a);
}
} // End of the blob loop
NULL_USE(n_nw_tris_beg);
NULL_USE(n_ns_tris_beg);
NULL_USE(n_ws_tris_beg);
NULL_USE(n_nws_seg_beg);
nblobs -= 1;
printf("-----------------------------------------------\n");
printf("Sorting the blobs based on volume \n");
printf("-----------------------------------------------\n");
int TempLabel,aa,bb;
double TempValue;
IntArray OldLabel(nblobs);
for (a=0; a<nblobs; a++) OldLabel(a) = a;
// Sort the blob averages based on volume
for (aa=0; aa<nblobs-1; aa++){
for ( bb=aa+1; bb<nblobs; bb++){
if (BlobAverages(0,aa) < BlobAverages(0,bb)){
// Exchange location of blobs aa and bb
//printf("Switch blob %i with %i \n", OldLabel(aa),OldLabel(bb));
// switch the label
TempLabel = OldLabel(bb);
OldLabel(bb) = OldLabel(aa);
OldLabel(aa) = TempLabel;
// switch the averages
for (idx=0; idx<NUM_AVERAGES; idx++){
TempValue = BlobAverages(idx,bb);
BlobAverages(idx,bb) = BlobAverages(idx,aa);
BlobAverages(idx,aa) = TempValue;
}
}
}
}
IntArray NewLabel(nblobs);
for (aa=0; aa<nblobs; aa++){
// Match the new label for original blob aa
bb=0;
while (OldLabel(bb) != aa) bb++;
NewLabel(aa) = bb;
}
// Re-label the blob ID
printf("Re-labeling the blobs, now indexed by volume \n");
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
if (LocalBlobID(i,j,k) > -1){
TempLabel = NewLabel(LocalBlobID(i,j,k));
LocalBlobID(i,j,k) = TempLabel;
}
}
}
}
FILE *BLOBLOG= fopen("blobs.tcat","a");
for (a=0; a<nblobs; a++){
//printf("Blob id =%i \n",a);
//printf("Original Blob id = %i \n",OldLabel(a));
//printf("Blob volume (voxels) = %f \n", BlobAverages(0,a));
for (idx=0; idx<28; idx++){
fprintf(BLOBLOG,"%.8g ",BlobAverages(idx,a));
}
fprintf(BLOBLOG,"\n");
}
fclose(BLOBLOG);
double iVol = 1.0/Nx/Ny/Nz;
sw = 1.0;
// Compute the Sauter mean grain diamter
double D = 6.0*Nx*Ny*Nz*(1.0-porosity) / As;
double pw,pn,pc,awnD,ansD,awsD,JwnD,trJwnD,lwnsDD,cwns;
pw = paw/vol_w;
printf("paw = %f \n", paw/vol_w);
printf("vol_w = %f \n", vol_w);
printf("-----------------------------------------------\n");
double pwn=0.0;
vol_n = nwp_volume = 0.0;
pan = 0.0;
awn = ans = lwns = 0.0;
van(0) = van(1) = van(2) = 0.0;
vawn(0) = vawn(1) = vawn(2) = 0.0;
Gwn(0) = Gwn(1) = Gwn(2) = 0.0;
Gwn(3) = Gwn(4) = Gwn(5) = 0.0;
Gns(0) = Gns(1) = Gns(2) = 0.0;
Gns(3) = Gns(4) = Gns(5) = 0.0;
Jwn = Kwn = efawns = 0.0;
trJwn = trawn = trRwn = 0.0;
// Write out the "equilibrium" state with a 0.5 % change in saturation"
// Always write the largest blob
// sw, pw, pn, pc*D/gamma, awn*D, aws*D, ans*D,lwns*D*D, Jwn*D, trJwn*D, cwns, nblobs
printf("Computing equilibria from blobs \n");
printf("Sauter mean diamter = %f \n",D);
printf("WARNING: lazy coder hard-coded the surface tension as 0.058 \n");
FILE *BLOBSTATES= fopen("blobstates.tcat","a");
fprintf(BLOBSTATES,"%.5g %.5g %.5g\n",vol_w,pw,aws);
// Compute the averages over the entire non-wetting phsae
for (a=0; a<nblobs; a++){
nwp_volume += BlobAverages(0,a);
pwn += (BlobAverages(1,a)-pw)*BlobAverages(2,a);
pan += BlobAverages(1,a)*BlobAverages(28,a);
awn += BlobAverages(2,a);
ans += BlobAverages(3,a);
Jwn += BlobAverages(4,a)*BlobAverages(2,a);
Kwn += BlobAverages(5,a)*BlobAverages(2,a);
lwns += BlobAverages(6,a);
efawns += BlobAverages(7,a)*BlobAverages(6,a);
van(0) += BlobAverages(8,a)*BlobAverages(28,a);
van(1) += BlobAverages(9,a)*BlobAverages(28,a);
van(2) += BlobAverages(10,a)*BlobAverages(28,a);
vawn(0) += BlobAverages(11,a)*BlobAverages(2,a);
vawn(1) += BlobAverages(12,a)*BlobAverages(2,a);
vawn(2) += BlobAverages(13,a)*BlobAverages(2,a);
Gwn(0) += BlobAverages(14,a)*BlobAverages(2,a);
Gwn(1) += BlobAverages(15,a)*BlobAverages(2,a);
Gwn(2) += BlobAverages(16,a)*BlobAverages(2,a);
Gwn(3) += BlobAverages(17,a)*BlobAverages(2,a);
Gwn(4) += BlobAverages(18,a)*BlobAverages(2,a);
Gwn(5) += BlobAverages(19,a)*BlobAverages(2,a);
Gns(0) += BlobAverages(20,a)*BlobAverages(3,a);
Gns(1) += BlobAverages(21,a)*BlobAverages(3,a);
Gns(2) += BlobAverages(22,a)*BlobAverages(3,a);
Gns(3) += BlobAverages(23,a)*BlobAverages(3,a);
Gns(4) += BlobAverages(24,a)*BlobAverages(3,a);
Gns(5) += BlobAverages(25,a)*BlobAverages(3,a);
trawn += BlobAverages(26,a);
trJwn += BlobAverages(27,a)*BlobAverages(26,a);
vol_n += BlobAverages(28,a);
}
// Subtract off portions of non-wetting phase in order of size
for (a=nblobs-1; a>0; a--){
// Subtract the features one-by-one
nwp_volume -= BlobAverages(0,a);
pan -= BlobAverages(1,a)*BlobAverages(28,a);
pwn -= (BlobAverages(1,a)-pw)*BlobAverages(2,a);
awn -= BlobAverages(2,a);
ans -= BlobAverages(3,a);
Jwn -= BlobAverages(4,a)*BlobAverages(2,a);
Kwn -= BlobAverages(5,a)*BlobAverages(2,a);
lwns -= BlobAverages(6,a);
efawns -= BlobAverages(7,a)*BlobAverages(6,a);
van(0) -= BlobAverages(8,a)*BlobAverages(28,a);
van(1) -= BlobAverages(9,a)*BlobAverages(28,a);
van(2) -= BlobAverages(10,a)*BlobAverages(28,a);
vawn(0) -= BlobAverages(11,a)*BlobAverages(2,a);
vawn(1) -= BlobAverages(12,a)*BlobAverages(2,a);
vawn(2) -= BlobAverages(13,a)*BlobAverages(2,a);
Gwn(0) -= BlobAverages(14,a)*BlobAverages(2,a);
Gwn(1) -= BlobAverages(15,a)*BlobAverages(2,a);
Gwn(2) -= BlobAverages(16,a)*BlobAverages(2,a);
Gwn(3) -= BlobAverages(17,a)*BlobAverages(2,a);
Gwn(4) -= BlobAverages(18,a)*BlobAverages(2,a);
Gwn(5) -= BlobAverages(19,a)*BlobAverages(2,a);
Gns(0) -= BlobAverages(20,a)*BlobAverages(3,a);
Gns(1) -= BlobAverages(21,a)*BlobAverages(3,a);
Gns(2) -= BlobAverages(22,a)*BlobAverages(3,a);
Gns(3) -= BlobAverages(23,a)*BlobAverages(3,a);
Gns(4) -= BlobAverages(24,a)*BlobAverages(3,a);
Gns(5) -= BlobAverages(25,a)*BlobAverages(3,a);
trawn -= BlobAverages(26,a);
trJwn -= BlobAverages(27,a)*BlobAverages(26,a);
vol_n -= BlobAverages(28,a);
// Update wetting phase averages
aws += BlobAverages(3,a);
Gws(0) += BlobAverages(20,a)*BlobAverages(3,a);
Gws(1) += BlobAverages(21,a)*BlobAverages(3,a);
Gws(2) += BlobAverages(22,a)*BlobAverages(3,a);
Gws(3) += BlobAverages(23,a)*BlobAverages(3,a);
Gws(4) += BlobAverages(24,a)*BlobAverages(3,a);
Gws(5) += BlobAverages(25,a)*BlobAverages(3,a);
if (fabs(1.0 - nwp_volume*iVol/porosity - sw) > 0.0025 || a == 1){
sw = 1.0 - nwp_volume*iVol/porosity;
JwnD = -Jwn*D/awn;
pn = pan/vol_n;
trJwnD = -trJwn*D/trawn;
cwns = -efawns / lwns;
awnD = awn*D*iVol;
awsD = aws*D*iVol;
ansD = ans*D*iVol;
lwnsDD = lwns*D*D*iVol;
pc = pwn*D/0.058/awn; // hard-coded surface tension due to being lazy
fprintf(BLOBSTATES,"%.5g %.5g %.5g ",sw,pn,pw);
fprintf(BLOBSTATES,"%.5g %.5g %.5g %.5g ",awnD,awsD,ansD,lwnsDD);
fprintf(BLOBSTATES,"%.5g %.5g %.5g %.5g %i\n",pc,JwnD,trJwnD,cwns,a);
}
}
fclose(BLOBSTATES);
start = 0;
for (a=0;a<nblobs;a++){
finish = start+b(a);
for (c=start;c<finish;c++){
// Get cube from the list
i = blobs(0,c);
j = blobs(1,c);
k = blobs(2,c);
// Label the entire cube so that interfaces can be re-labled easily
LocalBlobID(i,j,k) = NewLabel(a);
LocalBlobID(i+1,j,k) = NewLabel(a);
LocalBlobID(i,j+1,k) = NewLabel(a);
LocalBlobID(i+1,j+1,k) = NewLabel(a);
LocalBlobID(i,j,k+1) = NewLabel(a);
LocalBlobID(i+1,j,k+1) = NewLabel(a);
LocalBlobID(i,j+1,k+1) = NewLabel(a);
LocalBlobID(i+1,j+1,k+1) = NewLabel(a);
}
start=finish;
}
FILE *BLOBS;
BLOBS = fopen("Blobs.dat","wb");