From c598186468640f2d3172c71cfa2d4967636c4dc8 Mon Sep 17 00:00:00 2001 From: Dmitrii Zholud Date: Mon, 11 Dec 2017 19:31:38 +0100 Subject: [PATCH] Update README.md --- README.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 9be2fbe..97c7ee2 100644 --- a/README.md +++ b/README.md @@ -7,13 +7,13 @@ We present a detailed study of the asymptotic behavior of the distribution of th **MATLAB** -[OST /TST /WELCH /F]+ComputeKg.m - compute Kg for the Student one- and two- sample t−, Welch, and F− statistics using adaptive Simpson or Lobatto quadratures. Here g is an arbitrary multivariate density.1 +[[**OST**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/OSTComputeKg.m) /[**TST**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/TSTComputeKg.m) /[**WELCH**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/WELCHComputeKg.m) /[**F**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/FComputeKg.m)]+ComputeKg.m - compute Kg for the Student one- and two- sample t−, Welch, and F− statistics using adaptive Simpson or Lobatto quadratures. Here g is an arbitrary multivariate density.1 -[TST /WELCH /F]+ComputeKgIS+.m - the same as above but for the case where samples are independent.2 +[[**TST**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/TSTComputeKgIS.m) /[**WELCH**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/WELCHComputeKgIS.m) /[**F**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/FComputeKgIS.m)]+ComputeKgIS+.m - the same as above but for the case where samples are independent.2 -[OST /TST /WELCH /F]+ComputeKgIID+.m - the same as above but assuming that the samples consist of i.i.d. random variables.2 +[[**OST**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/OSTComputeKgIID.m) /[**TST**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/TSTComputeKgIID.m) /[**WELCH**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/WELCHComputeKgIID.m) /[**F**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/FComputeKgIID.m)]+ComputeKgIID+.m - the same as above but assuming that the samples consist of i.i.d. random variables.2 -RunSimulation+[IID/MVN]+.m - perform simulation study for i.i.d. and dependent/non-homogeneous cases, see Section 7 and Appendix B. +RunSimulation+[[**IID**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/Simulation%20Study/RunSimulationIID.m)/[**MVN**](https://github.com/OGCJN/Tail-approximations-for-the-Student-t--F--and-Welch-statistics/blob/master/Supplementary%20Materials/MATLAB/Simulation%20Study/RunSimulationMVN.m)]+.m - perform simulation study for i.i.d. and dependent/non-homogeneous cases, see Section 7 and Appendix B. **Wolfram Mathematica** @@ -34,7 +34,7 @@ RunSimulation+[IID/MVN]+.m - perform simulation study for i.i.d. and dependent/n ## Reference Zholud, D. (2014). [**Tail approximations for the Student t−, F−, and Welch statistics for non-normal and not necessarily i.i.d. random variables**](http://www.zholud.com/articles/Tail-approximations-for-the-Student-t-,-F-,-and-Welch-statistics-for-non-normal-and-not-necessarily-i.i.d.-random-variables.pdf), *Bernoulli*, Vol. 20, No. 4, pp. 2102-2130 -W.D. Ray and A.E.N.T. Pitman (1961). **An exact distribution of the Fisher-Behrens-Welch statistic for testing the difference between the means of two normal populations with unknown variance**, *J. Royal Stat. Soc., Series B*, Vol. 23, No. 2, pp. 377–384 +W.D. Ray and A.E.N.T. Pitman (1961). **An exact distribution of the Fisher-Behrens-Welch statistic for testing the difference between the means of two normal populations with unknown variance**, *J. Royal Stat. Soc., Series B*, Vol. 23, No. 2, pp. 377-384 ## BiBTeX