Skip to content

Commit 1bbfbd6

Browse files
committed
Add references to Lihong Li et all (2010)
Closes #11
1 parent dc7e057 commit 1bbfbd6

File tree

108 files changed

+4619
-3285
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

108 files changed

+4619
-3285
lines changed

R/policy_cmab_lin_ucb_disjoint.R

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -51,6 +51,10 @@ LinUCBDisjointPolicy <- R6::R6Class(
5151

5252
#' Policy: LinUCB with unique linear models
5353
#'
54+
#' LinUCBDisjointPolicy is an R implementation of
55+
#' "Algorithm 1 LinUCB" from Li (2010) "A contextual-bandit approach to
56+
#' personalized news article recommendation.".
57+
#'
5458
#' Each time step t, \code{LinUCBDisjointPolicy} runs a linear regression per arm that produces coefficients
5559
#' for each context feature \code{d}.
5660
#' Next, \code{LinUCBDisjointPolicy} observes the new context, and generates a predicted payoff or reward

R/policy_cmab_lin_ucb_disjoint_optimized.R

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -50,6 +50,10 @@ LinUCBDisjointOptimizedPolicy <- R6::R6Class(
5050

5151
#' Policy: LinUCB with unique linear models
5252
#'
53+
#' LinUCBDisjointOptimizedPolicy is an optimized R implementation of
54+
#' "Algorithm 1 LinUCB" from Li (2010) "A contextual-bandit approach to
55+
#' personalized news article recommendation.".
56+
#'
5357
#' Each time step t, \code{LinUCBDisjointPolicy} runs a linear regression per arm that produces coefficients
5458
#' for each context feature \code{d}.
5559
#' Next, \code{LinUCBDisjointPolicy} observes the new context, and generates a predicted payoff or reward

R/policy_cmab_lin_ucb_hybrid.R

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -115,6 +115,10 @@ LinUCBHybridPolicy <- R6::R6Class(
115115

116116
#' Policy: LinUCB with hybrid linear models
117117
#'
118+
#' LinUCBHybridPolicy is an R implementation of
119+
#' "Algorithm 2 LinUCB" from Li (2010) "A contextual-bandit approach to
120+
#' personalized news article recommendation.".
121+
#'
118122
#' Each time step t, \code{LinUCBHybridOptimizedPolicy} runs a linear regression per arm that produces
119123
#' coefficients for each context feature \code{d}. Next, it observes the new context, and generates a
120124
#' predicted payoff or reward together with a confidence interval for each available arm. It then proceeds

R/policy_cmab_lin_ucb_hybrid_optimized.R

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -119,6 +119,10 @@ LinUCBHybridOptimizedPolicy <- R6::R6Class(
119119

120120
#' Policy: LinUCB with hybrid linear models
121121
#'
122+
#' LinUCBHybridOptimizedPolicy is an optimized R implementation of
123+
#' "Algorithm 2 LinUCB" from Li (2010) "A contextual-bandit approach to
124+
#' personalized news article recommendation.".
125+
#'
122126
#' Each time step t, \code{LinUCBHybridOptimizedPolicy} runs a linear regression per arm that produces
123127
#' coefficients for each context feature \code{d}. Next, it observes the new context, and generates a
124128
#' predicted payoff or reward together with a confidence interval for each available arm. It then proceeds

docs/404.html

Lines changed: 215 additions & 0 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)