Skip to content

nightlyjourney/SimGNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

GraphEmbedding

This version is for the WSDM 2019 paper.

Datasets

Get the datasets from https://drive.google.com/drive/folders/1lY3pqpnUAK0H9Tgjyh7tlMVYy0gYPthC?usp=sharing and extract under data/:

  • AIDS80nef
  • AIDS700nef
  • linux
  • IMDBMulti

Get the pickle files (/save) from https://drive.google.com/drive/folders/1Eusvi4_iOKM0AsO1LhxQFkY62kDEtuMq?usp=sharing

Get the result files (/result) https://drive.google.com/drive/folders/1UXEGozaThjjuC-hnt4C7jn06L6I2Ra1v?usp=sharing

Dependencies

Install the following the tools and packages:

  • python3: Assume python3 by default (use pip3 to install packages).
  • numpy
  • pandas
  • scipy
  • scikit-learn
  • tensorflow (1.8.0 recommended)
  • networkx==1.10 (NOT 2.1)
  • beautifulsoup4
  • lxml
  • matplotlib
  • seaborn
  • colour
  • pytz
  • pygraphviz. The following is an example set of installation commands (tested on Ubuntu 16.04)
    sudo apt-get install graphviz libgraphviz-dev pkg-config
    pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"
    
  • Graph Edit Distance (GED):

Tips for PyCharm Users

  • If you see red lines under import, mark src and model/Siamese as Source Root, so that PyCharm can find those files.
  • Mark src/Siamese/logs and src/Siamese/exp as Excluded, so that PyCharm won't spend time inspecting those logs.

About

This is the code for the WSDM 2019 paper.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages