forked from facebookresearch/nougat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
165 lines (155 loc) · 5.81 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import sys
from pathlib import Path
import logging
import re
import argparse
import re
from functools import partial
import torch
from torch.utils.data import ConcatDataset
from tqdm import tqdm
from nougat import NougatModel
from nougat.utils.dataset import LazyDataset
from nougat.utils.checkpoint import get_checkpoint
from nougat.postprocessing import markdown_compatible
import fitz
logging.basicConfig(level=logging.INFO)
if torch.cuda.is_available():
BATCH_SIZE = int(
torch.cuda.get_device_properties(0).total_memory / 1024 / 1024 / 1000 * 0.3
)
else:
# don't know what a good value is here. Would not recommend to run on CPU
BATCH_SIZE = 5
logging.warning("No GPU found. Conversion on CPU is very slow.")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--batchsize",
"-b",
type=int,
default=BATCH_SIZE,
help="Batch size to use.",
)
parser.add_argument(
"--checkpoint",
"-c",
type=Path,
default=None,
help="Path to checkpoint directory.",
)
parser.add_argument("--out", "-o", type=Path, help="Output directory.")
parser.add_argument("--recompute",
action="store_true",
help="Recompute already computed PDF, discarding previous predictions.")
parser.add_argument(
"--markdown",
action="store_true",
help="Add postprocessing step for markdown compatibility.",
)
parser.add_argument("pdf", nargs="+", type=Path, help="PDF(s) to process.")
args = parser.parse_args()
if args.checkpoint is None or not args.checkpoint.exists():
args.checkpoint = get_checkpoint(args.checkpoint)
if args.out is None:
logging.warning("No output directory. Output will be printed to console.")
else:
if not args.out.exists():
logging.info("Output directory does not exist. Creating output directory.")
args.out.mkdir(parents=True)
if not args.out.is_dir():
logging.error("Output has to be directory.")
sys.exit(1)
if len(args.pdf) == 1 and not args.pdf[0].suffix == ".pdf":
# input is a list of pdfs
try:
args.pdf = [
Path(l) for l in open(args.pdf[0]).read().split("\n") if len(l) > 0
]
except:
pass
return args
def main():
args = get_args()
model = NougatModel.from_pretrained(args.checkpoint).to(torch.bfloat16)
if torch.cuda.is_available():
model.to("cuda")
model.eval()
datasets = []
for pdf in args.pdf:
if not pdf.exists():
continue
if args.out:
out_path = args.out / pdf.with_suffix(".mmd").name
if out_path.exists() and not args.recompute:
logging.info(
f"Skipping {pdf.name}, already computed. Run with --recompute to convert again."
)
continue
try:
dataset = LazyDataset(
pdf, partial(model.encoder.prepare_input, random_padding=False)
)
except fitz.fitz.FileDataError:
logging.info(f"Could not load file {str(pdf)}.")
continue
datasets.append(dataset)
if len(datasets) == 0:
return
dataloader = torch.utils.data.DataLoader(
ConcatDataset(datasets),
batch_size=args.batchsize,
shuffle=False,
collate_fn=LazyDataset.ignore_none_collate,
)
predictions = []
file_index = 0
page_num = 0
for i, (sample, is_last_page) in enumerate(tqdm(dataloader)):
model_output = model.inference(image_tensors=sample)
# check if model output is faulty
for j, output in enumerate(model_output["predictions"]):
if page_num == 0:
logging.info(
"Processing file %s with %i pages"
% (datasets[file_index].name, datasets[file_index].size)
)
page_num += 1
if output.strip() == "[MISSING_PAGE_POST]":
# uncaught repetitions -- most likely empty page
predictions.append(f"\n\n[MISSING_PAGE_EMPTY:{page_num}]\n\n")
continue
if model_output["repeats"][j] is not None:
if model_output["repeats"][j] > 0:
# If we end up here, it means the output is most likely not complete and was truncated.
logging.warning(f"Skipping page {page_num} due to repetitions.")
predictions.append(f"\n\n[MISSING_PAGE_FAIL:{page_num}]\n\n")
else:
# If we end up here, it means the document page is too different from the training domain.
# This can happen e.g. for cover pages.
predictions.append(
f"\n\n[MISSING_PAGE_EMPTY:{i*args.batchsize+j+1}]\n\n"
)
else:
if args.markdown:
output = markdown_compatible(output)
predictions.append(output)
if is_last_page[j]:
out = "".join(predictions).strip()
out = re.sub(r"\n{3,}", "\n\n", out).strip()
if args.out:
out_path = args.out / Path(is_last_page[j]).with_suffix(".mmd").name
out_path.parent.mkdir(parents=True, exist_ok=True)
out_path.write_text(out, encoding="utf-8")
else:
print(out, "\n\n")
predictions = []
page_num = 0
file_index += 1
if __name__ == "__main__":
main()