-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnavrep3dtrainencodedenv.py
243 lines (214 loc) · 10.5 KB
/
navrep3dtrainencodedenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from gym import spaces, Env
from gym.core import ObservationWrapper
import numpy as np
import os
from stable_baselines3.common.vec_env import SubprocVecEnv
from functools import partial
from navdreams.navrep3dtrainenv import NavRep3DTrainEnv
from navdreams.navrep3dtrainenv import convert_discrete_to_continuous_action
from navdreams.encodedenv3d import EnvEncoder
from navdreams.navrep3danyenv import NavRep3DAnyEnvDiscrete
class NavRep3DTrainEncoder(EnvEncoder):
def __init__(self, backend, encoding, variant="S",
gpu=False, encoder_to_share_model_with=None):
if backend == "GPT":
wm_model_path = "~/navdreams_data/wm_experiments/models/W/transformer_{}".format(variant)
elif backend == "RSSM_A0":
wm_model_path = "~/navdreams_data/wm_experiments/models/W/RSSM_A0_{}".format(variant)
elif backend == "TransformerL_V0":
wm_model_path = "~/navdreams_data/wm_experiments/models/W/TransformerL_V0_{}".format(variant)
elif backend == "TSSM_V2":
wm_model_path = "~/navdreams_data/wm_experiments/models/W/TSSM_V2_{}".format(variant)
else:
raise NotImplementedError
wm_model_path = os.path.expanduser(wm_model_path)
super(NavRep3DTrainEncoder, self).__init__(
backend, encoding,
wm_model_path=wm_model_path,
gpu=gpu,
encoder_to_share_model_with=None,
)
class EncoderObsWrapper(ObservationWrapper):
"""
Wrapper for compatibility with dreamer
"""
def __init__(self, env, backend="GPT", encoding="V_ONLY", variant="S",
gpu=False, shared_encoder=None, encoder=None):
super().__init__(env)
if encoder is None:
encoder = NavRep3DTrainEncoder(backend, encoding, variant=variant,
gpu=gpu, encoder_to_share_model_with=shared_encoder)
self.encoder = encoder
self.observation_space = self.encoder.observation_space
def observation(self, obs):
action = self.unwrapped.last_action
h = self.encoder._encode_obs(obs, action)
return h
def reset(self, *args, **kwargs):
self.encoder.reset()
return super(EncoderObsWrapper, self).reset(*args, **kwargs)
def close(self):
self.encoder.close()
return super(EncoderObsWrapper, self).close()
class NavRep3DTrainEncodedEnv(Env):
""" takes a (3) action as input
outputs encoded obs (546) """
def __init__(self, backend, encoding, variant="S",
verbose=0, collect_statistics=True, debug_export_every_n_episodes=0, port=25001,
gpu=False, shared_encoder=None, encoder=None):
if encoder is None:
encoder = NavRep3DTrainEncoder(backend, encoding, variant,
gpu=gpu, encoder_to_share_model_with=shared_encoder)
self.encoder = encoder
self.env = NavRep3DTrainEnv(verbose=verbose, collect_statistics=collect_statistics,
debug_export_every_n_episodes=debug_export_every_n_episodes,
port=port)
self.action_space = spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32)
self.observation_space = self.encoder.observation_space
self.episode_statistics = self.env.episode_statistics
def _get_dt(self):
return self.env._get_dt()
def _get_viewer(self):
return self.encoder.viewer
def step(self, action):
obs, reward, done, info = self.env.step(action)
h = self.encoder._encode_obs(obs, action)
return h, reward, done, info
def reset(self, *args, **kwargs):
self.encoder.reset()
obs = self.env.reset(*args, **kwargs)
h = self.encoder._encode_obs(obs, np.array([0,0,0]))
return h
def close(self):
self.env.close()
self.encoder.close()
def render(self, mode="human", close=False, save_to_file=False):
self.encoder._render_side_by_side(mode=mode, close=close, save_to_file=save_to_file)
class SubprocVecNavRep3DEncodedEnv(SubprocVecEnv):
""" A SubprocVecEnv with multiple NavRep3DTrainEncodedEnv will fail: each encoder gets copied
and the GPU memory fills up.
SubprocVecEnv:
simulators S S S S (unity + CPU)
| | | | - each in own process
encoders E E E E (GPU)
This:
simulators S S S S (unity + CPU)
| | | | - each in own process
------
|
encoder E (GPU)
This wrapped SubprocVecEnv allows encoding the output of the multiprocessed environments sequentially,
which makes multiprocessed navrep3d encoded environments usable
"""
def __init__(self, backend, encoding, n_envs,
verbose=0, collect_statistics=True, debug_export_every_n_episodes=0, build_name=None,
gpu=False, ):
# create multiple encoder objects (to store distinct sequences) but with single encoding model
self.encoders = []
shared_encoder = None
for i in range(n_envs):
self.encoders.append(
NavRep3DTrainEncoder(backend, encoding, gpu=gpu,
encoder_to_share_model_with=shared_encoder)
)
if i == 0:
shared_encoder = self.encoders[i]
# create multiprocessed simulators
env_init_funcs = [
partial(
lambda i: NavRep3DTrainEnv(
verbose=verbose, collect_statistics=collect_statistics, build_name=build_name,
debug_export_every_n_episodes=debug_export_every_n_episodes if i == 0 else 0,
port=25002+i
),
i=k
)
for k in range(n_envs)
]
super(SubprocVecNavRep3DEncodedEnv, self).__init__(env_init_funcs)
self.simulator_obs_space = self.observation_space
self.encoder_obs_space = self.encoders[0].observation_space
self.observation_space = self.encoder_obs_space
def step_async(self, actions):
super(SubprocVecNavRep3DEncodedEnv, self).step_async(actions)
self.last_actions = actions
def step_wait(self):
# hack: vecenv expects the simulator obs space to be set.
# RL algo expects obs space to be the encoded obs space -> we switch them around
self.observation_space = self.simulator_obs_space
obs, rews, dones, infos = super(SubprocVecNavRep3DEncodedEnv, self).step_wait()
self.observation_space = self.encoder_obs_space
h = [encoder._encode_obs((imob, rsob), a)
for imob, rsob, a, encoder in zip(obs[0], obs[1], self.last_actions, self.encoders)]
return np.stack(h), rews, dones, infos
def reset(self):
for encoder in self.encoders:
encoder.reset()
self.observation_space = self.simulator_obs_space
obs = super(SubprocVecNavRep3DEncodedEnv, self).reset()
self.observation_space = self.encoder_obs_space
h = [encoder._encode_obs((imob, rsob), np.array([0,0,0]))
for imob, rsob, encoder in zip(obs[0], obs[1], self.encoders)]
return np.stack(h)
class SubprocVecNavRep3DEncodedEnvDiscrete(SubprocVecEnv):
""" Same as SubprocVecNavRep3DEncodedEnv but using discrete actions.
Could have been a wrapper instead, but fear of spaghetti-code outweighed DRY """
def __init__(self, backend, encoding, variant, n_envs,
verbose=0, collect_statistics=True, debug_export_every_n_episodes=0, build_name=None,
gpu=False, ):
# create multiple encoder objects (to store distinct sequences) but with single encoding model
build_names = build_name if isinstance(build_name, list) else [build_name] * n_envs
self.encoders = []
shared_encoder = None
for i in range(n_envs):
self.encoders.append(
NavRep3DTrainEncoder(backend, encoding, variant, gpu=gpu,
encoder_to_share_model_with=shared_encoder)
)
if i == 0:
shared_encoder = self.encoders[i]
# create multiprocessed simulators
env_init_funcs = [
partial(
lambda i: NavRep3DAnyEnvDiscrete(
verbose=verbose, collect_statistics=collect_statistics, build_name=build_names[i],
debug_export_every_n_episodes=debug_export_every_n_episodes if i == 0 else 0,
port=25002+i
),
i=k
)
for k in range(n_envs)
]
super(SubprocVecNavRep3DEncodedEnvDiscrete, self).__init__(env_init_funcs)
self.simulator_obs_space = self.observation_space
self.encoder_obs_space = self.encoders[0].observation_space
self.observation_space = self.encoder_obs_space
def step_async(self, actions):
super(SubprocVecNavRep3DEncodedEnvDiscrete, self).step_async(actions)
self.last_actions = actions
def step_wait(self):
# hack: vecenv expects the simulator obs space to be set.
# RL algo expects obs space to be the encoded obs space -> we switch them around
self.observation_space = self.simulator_obs_space
obs, rews, dones, infos = super(SubprocVecNavRep3DEncodedEnvDiscrete, self).step_wait()
self.observation_space = self.encoder_obs_space
h = [encoder._encode_obs((imob, rsob), convert_discrete_to_continuous_action(a))
for imob, rsob, a, encoder in zip(obs[0], obs[1], self.last_actions, self.encoders)]
return np.stack(h), rews, dones, infos
def reset(self):
for encoder in self.encoders:
encoder.reset()
self.observation_space = self.simulator_obs_space
obs = super(SubprocVecNavRep3DEncodedEnvDiscrete, self).reset()
self.observation_space = self.encoder_obs_space
h = [encoder._encode_obs((imob, rsob), np.array([0,0,0]))
for imob, rsob, encoder in zip(obs[0], obs[1], self.encoders)]
return np.stack(h)
if __name__ == "__main__":
from navrep.tools.envplayer import EnvPlayer
np.set_printoptions(precision=2, suppress=True)
# env = NavRep3DTrainEncodedEnv(verbose=1, backend="RSSM_A0", encoding="V_ONLY", variant="SCR")
# env = NavRep3DTrainEncodedEnv(verbose=1, backend="TransformerL_V0", encoding="V_ONLY", variant="SCR")
env = NavRep3DTrainEncodedEnv(verbose=1, backend="GPT", encoding="V_ONLY", variant="SCR")
player = EnvPlayer(env)
player.run()