This package is a collection of Fortran 90 subroutines for accurately and efficiently solving matrix eigenvalue problems using a variety of methods specfialized for distinct problem types.
- Thomas R. Cameron, Davidson College, NC
- Nikolas I. Steckley, Steckley & Associates
LMPEP source code can be found in the src directory. Numerical tests can be found in the tests directory; please update the enviroment file in tests/src/environment.f90 with the path to the tests directory to run them.
This software is based on the following articles:
- J. L. Aurentz, T. Mach, L. Robol, R. Vandebril, and D. S. Watkins, Fast and backward stable computation of the eigenvalues of matrix polynomials, Preprint on arXiv.org math, (2016).
- J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 942–973.
- D. A. Bini, Numerical computation of polynomial zeros by means of Aberths method, Numer. Algorithms, 13 (1996), pp. 179–200.
- D. A. Bini, L. Gemignani, and F. Tisseur, The Ehrlich-Aberth method for the nonsymmetric tridiagonal eigenvalue problem, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 153–175.
- D. A. Bini and V. Noferini, Solving polynomial eigenvalue problem by means of the Ehrlich-Aberth method, Linear Algebra Appl., 439 (2013), pp. 1130–1149.
- J. Gary, Hyman’s method applied to the general eigenvalue problem, Mathematics of Computation, 19 (1965), pp. 314–316.
- S. J. Hammerling, C. J. Munro, and T. Francoise, An algorithm for the complete solution of quadratic eigenvalue problem, Transactions on Mathematical Software, 39 (2013), p. 19.
- B. Parlett, Laguerre’s method applied to the matrix eigenvalue problem, Mathematics ofComputation, 18 (1964), pp. 464–485.
- B. Plestenjak, Numerical methods for the tridiagonal hyperbolic quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 1157–1172.
- F. Tisseur, Backward error and condition of polynomial eigenvalue problem, Linear Algebra Appl., 309 (2000), pp. 339–361.