-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
51 lines (40 loc) · 1.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from tensorflow.keras.models import load_model
from tensorflow.keras import preprocessing
import json
import tensorflow as tf
from argparse import ArgumentParser
import sys
import numpy as np
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--MobilenetV1-folder', default= 'MobilenetV1',type= str)
parser.add_argument('--test-file', type= str, required= True)
parser.add_argument('--image-size', default= 150, type= int)
parser.add_argument('--rho',default= 1.0, type= float)
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
print('---------------------Welcome to Mobilenet V1-------------------')
print('Author')
print('Github: Nguyendat-bit')
print('Email: nduc0231@gmail')
print('---------------------------------------------------------------------')
print('Predict MobileNetV1 model with hyper-params:')
print('===========================')
for i, arg in enumerate(vars(args)):
print('{}.{}: {}'.format(i, arg, vars(args)[arg]))
# Load model
model = load_model(args.MobilenetV1_folder)
# Load label
with open('label.json') as f:
class_indices = json.load(f)
indices_class = dict((j,i) for i,j in class_indices.items())
img = preprocessing.image.load_img(path= args.test_file, target_size= (args.image_size, args.image_size))
img = preprocessing.image.img_to_array(img) / 255.
img = tf.expand_dims(img, axis= 0) # (batch, row, col, chanel)
result = model(img)
result = np.argmax(result.numpy())
print('---------------------Prediction Result: -------------------')
print('This image is {}'.format(indices_class[result]))