You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* iq4_kss: WIP
* iq4_kss: CUDA dequantize works
So we can run perplexity. Sadly, the result does not look good
on the bpw vs quantization error plot.
* iq4_kss: slightly better quantization
* iq4_kss: another small quantization improvement
* iq4_kss: CUDA works
TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B.
In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks.
I.e., the reduced model size more than offsets the additional
bit fiddling required for iq4_kss.
* iq4_kss: new bit arrangement - CUDA and Zen4 work
Did not lose performance on CUDA. Zen4 is decent, but not great:
PP-512(LLaMA-3.1-8B) = 163 t/s.
TG-128 is of course better than other 4-bit quants due to smaller model size.
We get 14.5 t/s @ 8 threads.
* iq4_kss: ARM_NEON. Predictably very slow
* iq4_kss: Metal
PP is not too bad - just 10% slower than q4_0.
But TG is 30% slower, i.e., predictably bad.
* iq4_kss: somewhat faster Metal dot product
45.75 t/s -> 48.75 t/s.
Still 22% slower than q4_0
* iq4_kss: AVX2
Bad, but better than I expected.
PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X.
I.e., with 32 AVX2 threads we get the performance of
16 Zen4 threads.
* iq4_kss: very slightly faster Metal dot product
48.7 t/s -> 49.3 t/s
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
0 commit comments