|  | 
|  | 1 | +#include "common.cuh" | 
|  | 2 | +#include "fattn-common.cuh" | 
|  | 3 | +#include "fattn-tile-f16.cuh" | 
|  | 4 | + | 
|  | 5 | +#define FATTN_KQ_STRIDE_TILE_F16 64 | 
|  | 6 | + | 
|  | 7 | +template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size | 
|  | 8 | +#if !defined(GGML_USE_HIP) | 
|  | 9 | +__launch_bounds__(nwarps*WARP_SIZE, 2) | 
|  | 10 | +#endif // !defined(GGML_USE_HIP) | 
|  | 11 | +static __global__ void flash_attn_tile_ext_f16( | 
|  | 12 | +        const char * __restrict__ Q, | 
|  | 13 | +        const char * __restrict__ K, | 
|  | 14 | +        const char * __restrict__ V, | 
|  | 15 | +        const char * __restrict__ mask, | 
|  | 16 | +        const char * __restrict__ sinks, | 
|  | 17 | +        const int  * __restrict__ KV_max, | 
|  | 18 | +        float      * __restrict__ dst, | 
|  | 19 | +        float2     * __restrict__ dst_meta, | 
|  | 20 | +        const float scale, | 
|  | 21 | +        const float max_bias, | 
|  | 22 | +        const float m0, | 
|  | 23 | +        const float m1, | 
|  | 24 | +        const uint32_t n_head_log2, | 
|  | 25 | +        const float logit_softcap, | 
|  | 26 | +        const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03, | 
|  | 27 | +                            const int32_t nb01, const int32_t nb02, const int32_t nb03, | 
|  | 28 | +        const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13, | 
|  | 29 | +                            const int32_t nb11, const int32_t nb12, const int64_t nb13, | 
|  | 30 | +                            const int32_t nb21, const int32_t nb22, const int64_t nb23, | 
|  | 31 | +                            const int32_t ne31, const int32_t ne32, const int32_t ne33, | 
|  | 32 | +                            const int32_t nb31, const int32_t nb32, const int64_t nb33) { | 
|  | 33 | +#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) | 
|  | 34 | + | 
|  | 35 | +    // Skip unused kernel variants for faster compilation: | 
|  | 36 | +#ifdef FP16_MMA_AVAILABLE | 
|  | 37 | +    NO_DEVICE_CODE; | 
|  | 38 | +    return; | 
|  | 39 | +#endif // FP16_MMA_AVAILABLE | 
|  | 40 | +    if (use_logit_softcap && !(D == 128 || D == 256)) { | 
|  | 41 | +        NO_DEVICE_CODE; | 
|  | 42 | +        return; | 
|  | 43 | +    } | 
|  | 44 | + | 
|  | 45 | +    //In this kernel Q, K, V are matrices while i, j, k are matrix indices. | 
|  | 46 | + | 
|  | 47 | +    const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on. | 
|  | 48 | + | 
|  | 49 | +    const int sequence = blockIdx.z / ne02; | 
|  | 50 | +    const int head = blockIdx.z - sequence*ne02; | 
|  | 51 | +    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. | 
|  | 52 | +    const float2 * Q_f2   = (const float2 *) (Q    + nb03* sequence         + nb02* head              + nb01*ic0); | 
|  | 53 | +    const half2  * K_h2   = (const half2  *) (K    + nb13* sequence         + nb12*(head / gqa_ratio)); | 
|  | 54 | +    const half2  * V_h2   = (const half2  *) (V    + nb13* sequence         + nb12*(head / gqa_ratio)); // K and V have same shape | 
|  | 55 | +    const half   * maskh  = (const half   *) (mask  + nb33*(sequence % ne33)                          + nb31*ic0); | 
|  | 56 | +    const float  * sinksf = (const float  *) (sinks); | 
|  | 57 | + | 
|  | 58 | +    const int stride_KV2 = nb11 / sizeof(half2); | 
|  | 59 | + | 
|  | 60 | +    const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1); | 
|  | 61 | +    const half  slopeh = __float2half(slopef); | 
|  | 62 | + | 
|  | 63 | +    static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); | 
|  | 64 | + | 
|  | 65 | +    __shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16]; | 
|  | 66 | +    half2 * KQ2 = (half2 *) KQ; | 
|  | 67 | + | 
|  | 68 | +    __shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts. | 
|  | 69 | + | 
|  | 70 | +    half kqmax[ncols/nwarps]; | 
|  | 71 | +#pragma unroll | 
|  | 72 | +    for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
|  | 73 | +        kqmax[j0/nwarps] = -HALF_MAX_HALF; | 
|  | 74 | +    } | 
|  | 75 | +    half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}}; | 
|  | 76 | + | 
|  | 77 | +    half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; | 
|  | 78 | + | 
|  | 79 | +    // Convert Q to half2 and store in registers: | 
|  | 80 | +    __shared__ half2 Q_h2[ncols][D/2]; | 
|  | 81 | +#pragma unroll | 
|  | 82 | +    for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
|  | 83 | +        const int j = j0 + threadIdx.y; | 
|  | 84 | + | 
|  | 85 | +#pragma unroll | 
|  | 86 | +        for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
|  | 87 | +            const int i = i0 + threadIdx.x; | 
|  | 88 | + | 
|  | 89 | +            const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); | 
|  | 90 | +            Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); | 
|  | 91 | +        } | 
|  | 92 | +    } | 
|  | 93 | + | 
|  | 94 | +    __syncthreads(); | 
|  | 95 | + | 
|  | 96 | +    const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11; | 
|  | 97 | +    for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) { | 
|  | 98 | +        // Calculate KQ tile and keep track of new maximum KQ values: | 
|  | 99 | + | 
|  | 100 | +        half kqmax_new[ncols/nwarps]; | 
|  | 101 | +#pragma unroll | 
|  | 102 | +        for (int j = 0; j < ncols/nwarps; ++j) { | 
|  | 103 | +            kqmax_new[j] = kqmax[j]; | 
|  | 104 | +        } | 
|  | 105 | + | 
|  | 106 | +#pragma unroll | 
|  | 107 | +        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) { | 
|  | 108 | +            const int i_KQ = i_KQ_0 + threadIdx.y; | 
|  | 109 | + | 
|  | 110 | +#pragma unroll | 
|  | 111 | +            for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { | 
|  | 112 | +                const int k_KQ = k_KQ_0 + threadIdx.x; | 
|  | 113 | + | 
|  | 114 | +                KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; | 
|  | 115 | +            } | 
|  | 116 | +        } | 
|  | 117 | + | 
|  | 118 | +        __syncthreads(); | 
|  | 119 | + | 
|  | 120 | +        half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}}; | 
|  | 121 | + | 
|  | 122 | +#pragma unroll | 
|  | 123 | +        for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) { | 
|  | 124 | +            half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE]; | 
|  | 125 | +            half2 Q_k[ncols/nwarps]; | 
|  | 126 | + | 
|  | 127 | +#pragma unroll | 
|  | 128 | +            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { | 
|  | 129 | +                const int i_KQ = i_KQ_0 + threadIdx.x; | 
|  | 130 | + | 
|  | 131 | +                K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; | 
|  | 132 | +            } | 
|  | 133 | +#pragma unroll | 
|  | 134 | +            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | 
|  | 135 | +                const int j_KQ = j_KQ_0 + threadIdx.y; | 
|  | 136 | + | 
|  | 137 | +                Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ]; | 
|  | 138 | +            } | 
|  | 139 | + | 
|  | 140 | +#pragma unroll | 
|  | 141 | +            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { | 
|  | 142 | +#pragma unroll | 
|  | 143 | +                for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | 
|  | 144 | +                    sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps]; | 
|  | 145 | +                } | 
|  | 146 | +            } | 
|  | 147 | +        } | 
|  | 148 | + | 
|  | 149 | +#pragma unroll | 
|  | 150 | +        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { | 
|  | 151 | +            const int i_KQ = i_KQ_0 + threadIdx.x; | 
|  | 152 | + | 
|  | 153 | +#pragma unroll | 
|  | 154 | +            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | 
|  | 155 | +                const int j_KQ = j_KQ_0 + threadIdx.y; | 
|  | 156 | + | 
|  | 157 | +                half sum; | 
|  | 158 | +                if (use_logit_softcap) { | 
|  | 159 | +                    const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); | 
|  | 160 | +                    sum = logit_softcap * tanhf(tmp.x + tmp.y); | 
|  | 161 | +                } else { | 
|  | 162 | +                    sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); | 
|  | 163 | +                } | 
|  | 164 | +                sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); | 
|  | 165 | + | 
|  | 166 | +                kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum); | 
|  | 167 | + | 
|  | 168 | +                KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum; | 
|  | 169 | +            } | 
|  | 170 | +        } | 
|  | 171 | + | 
|  | 172 | +        __syncthreads(); | 
|  | 173 | + | 
|  | 174 | +#pragma unroll | 
|  | 175 | +        for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
|  | 176 | +            const int j = j0 + threadIdx.y; | 
|  | 177 | + | 
|  | 178 | +            kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); | 
|  | 179 | +            const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps])); | 
|  | 180 | +            kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; | 
|  | 181 | + | 
|  | 182 | +#pragma unroll | 
|  | 183 | +            for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) { | 
|  | 184 | +                const int i = i0 + threadIdx.x; | 
|  | 185 | + | 
|  | 186 | +                const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]); | 
|  | 187 | +                const half2 val = h2exp(diff); | 
|  | 188 | +                kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val; | 
|  | 189 | +                KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val; | 
|  | 190 | +            } | 
|  | 191 | + | 
|  | 192 | +#pragma unroll | 
|  | 193 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
|  | 194 | +                VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale; | 
|  | 195 | +            } | 
|  | 196 | +        } | 
|  | 197 | + | 
|  | 198 | +        __syncthreads(); | 
|  | 199 | + | 
|  | 200 | +#pragma unroll | 
|  | 201 | +        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) { | 
|  | 202 | +            const int k = k0 + threadIdx.y; | 
|  | 203 | + | 
|  | 204 | +#pragma unroll | 
|  | 205 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
|  | 206 | +                const int i = i0 + threadIdx.x; | 
|  | 207 | + | 
|  | 208 | +                KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i]; | 
|  | 209 | +            } | 
|  | 210 | +        } | 
|  | 211 | + | 
|  | 212 | +        __syncthreads(); | 
|  | 213 | + | 
|  | 214 | +#pragma unroll | 
|  | 215 | +        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) { | 
|  | 216 | +            half2  V_k[(D/2)/WARP_SIZE][2]; | 
|  | 217 | +            half2 KQ_k[ncols/nwarps]; | 
|  | 218 | + | 
|  | 219 | +#pragma unroll | 
|  | 220 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
|  | 221 | +                const int i = i0 + threadIdx.x; | 
|  | 222 | + | 
|  | 223 | +                V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i]; | 
|  | 224 | +                V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i]; | 
|  | 225 | +            } | 
|  | 226 | +#pragma unroll | 
|  | 227 | +            for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
|  | 228 | +                const int j = j0 + threadIdx.y; | 
|  | 229 | + | 
|  | 230 | +                KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2]; | 
|  | 231 | +            } | 
|  | 232 | + | 
|  | 233 | +#pragma unroll | 
|  | 234 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
|  | 235 | +#pragma unroll | 
|  | 236 | +                for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
|  | 237 | +                    VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]); | 
|  | 238 | +                    VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]); | 
|  | 239 | +                } | 
|  | 240 | +            } | 
|  | 241 | +        } | 
|  | 242 | + | 
|  | 243 | +        __syncthreads(); | 
|  | 244 | +    } | 
|  | 245 | + | 
|  | 246 | +    //Attention sink: adjust running max and sum once per head | 
|  | 247 | +    if (sinksf && blockIdx.y == 0) { | 
|  | 248 | +        const half sink = __float2half(sinksf[head]); | 
|  | 249 | + | 
|  | 250 | +#pragma unroll | 
|  | 251 | +        for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
|  | 252 | +            half kqmax_new_j = fmaxf(kqmax[j0/nwarps], sink); | 
|  | 253 | +            kqmax_new_j = warp_reduce_max(kqmax_new_j); | 
|  | 254 | + | 
|  | 255 | +            const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new_j)); | 
|  | 256 | +            kqmax[j0/nwarps] = kqmax_new_j; | 
|  | 257 | + | 
|  | 258 | +            const half val = hexp(sink - kqmax[j0/nwarps]); | 
|  | 259 | +            kqsum[j0/nwarps] = kqsum[j0/nwarps] * KQ_max_scale; | 
|  | 260 | +            if (threadIdx.x == 0) { | 
|  | 261 | +                kqsum[j0/nwarps].x = __hadd(__low2half(kqsum[j0/nwarps]), val); | 
|  | 262 | +            } | 
|  | 263 | + | 
|  | 264 | +#pragma unroll | 
|  | 265 | +            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
|  | 266 | +                VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale; | 
|  | 267 | +            } | 
|  | 268 | +        } | 
|  | 269 | +    } | 
|  | 270 | + | 
|  | 271 | +    float2 * dst2 = (float2 *) dst; | 
|  | 272 | + | 
|  | 273 | +#pragma unroll | 
|  | 274 | +    for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { | 
|  | 275 | +        const int j_VKQ = j_VKQ_0 + threadIdx.y; | 
|  | 276 | + | 
|  | 277 | +        if (ic0 + j_VKQ >= ne01) { | 
|  | 278 | +            return; | 
|  | 279 | +        } | 
|  | 280 | + | 
|  | 281 | +        half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]); | 
|  | 282 | +        kqsum_j = warp_reduce_sum((float)kqsum_j); | 
|  | 283 | + | 
|  | 284 | +        const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y; | 
|  | 285 | + | 
|  | 286 | +#pragma unroll | 
|  | 287 | +        for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) { | 
|  | 288 | +            const int i0 = i00 + threadIdx.x; | 
|  | 289 | + | 
|  | 290 | +            half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE]; | 
|  | 291 | +            if (gridDim.y == 1) { | 
|  | 292 | +                dst_val /= __half2half2(kqsum_j); | 
|  | 293 | +            } | 
|  | 294 | +            dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val); | 
|  | 295 | +        } | 
|  | 296 | + | 
|  | 297 | +        if (gridDim.y != 1 && threadIdx.x == 0) { | 
|  | 298 | +            dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); | 
|  | 299 | +        } | 
|  | 300 | +    } | 
|  | 301 | +#else | 
|  | 302 | +    GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale, | 
|  | 303 | +        max_bias, m0, m1, n_head_log2, logit_softcap, | 
|  | 304 | +        ne00, ne01, ne02, ne03, | 
|  | 305 | +              nb01, nb02, nb03, | 
|  | 306 | +        ne10, ne11, ne12, ne13, | 
|  | 307 | +              nb11, nb12, nb13, | 
|  | 308 | +              nb21, nb22, nb23, | 
|  | 309 | +              ne31, ne32, ne33, | 
|  | 310 | +              nb31, nb32, nb33); | 
|  | 311 | +    NO_DEVICE_CODE; | 
|  | 312 | +#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE) | 
|  | 313 | +} | 
|  | 314 | + | 
|  | 315 | +template <int cols_per_block, bool use_logit_softcap> | 
|  | 316 | +void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | 
|  | 317 | +    const ggml_tensor * Q = dst->src[0]; | 
|  | 318 | +    switch (Q->ne[0]) { | 
|  | 319 | +        case  64: { | 
|  | 320 | +            constexpr int    D             = 64; | 
|  | 321 | +            constexpr int    nwarps        = 8; | 
|  | 322 | +            constexpr size_t nbytes_shared = 0; | 
|  | 323 | +            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>; | 
|  | 324 | +            launch_fattn<D, cols_per_block, 1> | 
|  | 325 | +                (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false); | 
|  | 326 | +        } break; | 
|  | 327 | +        case 128: { | 
|  | 328 | +            constexpr int    D             = 128; | 
|  | 329 | +            constexpr int    nwarps        = 8; | 
|  | 330 | +            constexpr size_t nbytes_shared = 0; | 
|  | 331 | +            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>; | 
|  | 332 | +            launch_fattn<D, cols_per_block, 1> | 
|  | 333 | +                (ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false); | 
|  | 334 | +        } break; | 
|  | 335 | +        default: { | 
|  | 336 | +            GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128."); | 
|  | 337 | +        } break; | 
|  | 338 | +    } | 
|  | 339 | +} | 
|  | 340 | + | 
|  | 341 | +void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | 
|  | 342 | +    const ggml_tensor * KQV = dst; | 
|  | 343 | +    const ggml_tensor * Q   = dst->src[0]; | 
|  | 344 | + | 
|  | 345 | +    const int32_t precision = KQV->op_params[3]; | 
|  | 346 | +    GGML_ASSERT(precision == GGML_PREC_DEFAULT); | 
|  | 347 | + | 
|  | 348 | +    float logit_softcap; | 
|  | 349 | +    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); | 
|  | 350 | + | 
|  | 351 | +    if (Q->ne[1] <= 16) { | 
|  | 352 | +        constexpr int cols_per_block = 16; | 
|  | 353 | +        if (logit_softcap == 0.0f) { | 
|  | 354 | +            constexpr bool use_logit_softcap = false; | 
|  | 355 | +            launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst); | 
|  | 356 | +        } else { | 
|  | 357 | +            constexpr bool use_logit_softcap = true; | 
|  | 358 | +            launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst); | 
|  | 359 | +        } | 
|  | 360 | +        return; | 
|  | 361 | +    } | 
|  | 362 | + | 
|  | 363 | +    constexpr int cols_per_block = 32; | 
|  | 364 | +    if (logit_softcap == 0.0f) { | 
|  | 365 | +        constexpr bool use_logit_softcap = false; | 
|  | 366 | +        launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst); | 
|  | 367 | +    } else { | 
|  | 368 | +        constexpr bool use_logit_softcap = true; | 
|  | 369 | +        launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst); | 
|  | 370 | +    } | 
|  | 371 | +} | 
0 commit comments