forked from nbei/Deep-Flow-Guided-Video-Inpainting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFlowInitial.py
149 lines (126 loc) · 6.1 KB
/
FlowInitial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import os
import random
import cv2
import cvbase as cvb
import numpy as np
import torch.utils.data as data
import utils.image as im
import utils.region_fill as rf
class FlowSeq(data.Dataset):
def __init__(self, config, isTest=False):
super(FlowSeq, self).__init__()
self.config = config
self.data_items = []
self.size = self.config.IMAGE_SHAPE
self.res_size = self.config.RES_SHAPE
self.isTest = isTest
self.data_list = config.EVAL_LIST if isTest else config.TRAIN_LIST
with open(self.data_list, 'r') as f:
for line in f:
line = line.strip()
line = line.strip(' ')
line_split = line.split(' ')
flow_dir = line_split[0:11]
if self.config.DATA_ROOT is not None:
flow_dir = [os.path.join(self.config.DATA_ROOT, x) for x in flow_dir]
if self.config.get_mask:
mask_dir = line_split[11:22]
if not self.config.FIX_MASK:
mask_dir = [os.path.join(self.config.MASK_ROOT, x) for x in mask_dir]
else:
mask_dir = [os.path.join(self.config.MASK_ROOT) for x in mask_dir]
video_class_no = int(line_split[-1])
if not self.isTest:
self.data_items.append((flow_dir, video_class_no))
else:
output_dirs = line_split[-2]
if self.config.get_mask:
self.data_items.append((flow_dir, video_class_no, mask_dir, output_dirs))
else:
self.data_items.append((flow_dir, video_class_no, output_dirs))
def __len__(self):
return len(self.data_items)
def __getitem__(self, idx):
flow_dir = self.data_items[idx][0]
video_class_no = self.data_items[idx][1]
if self.config.get_mask:
mask_dir = self.data_items[idx][2]
if self.isTest:
output_dirs = self.data_items[idx][-1]
flow_set = []
mask_set = []
flow_mask_cat_set = []
flow_masked_set = []
if self.config.MASK_MODE == 'bbox':
tmp_bbox = im.random_bbox(self.config)
tmp_mask = im.bbox2mask(self.config, tmp_bbox)
tmp_mask = tmp_mask[0, 0, :, :]
fix_mask = np.expand_dims(tmp_mask, axis=2)
elif self.config.MASK_MODE == 'mid-bbox':
tmp_mask = im.mid_bbox_mask(self.config)
tmp_mask = tmp_mask[0, 0, :, :]
fix_mask = np.expand_dims(tmp_mask, axis=2)
for i in range(11):
tmp_flow = cvb.read_flow(flow_dir[i])
if self.config.get_mask:
tmp_mask = cv2.imread(mask_dir[i],
cv2.IMREAD_UNCHANGED)
tmp_mask = self._mask_tf(tmp_mask)
else:
if self.config.FIX_MASK:
tmp_mask = fix_mask.copy()
else:
tmp_bbox = im.random_bbox(self.config)
tmp_mask = im.bbox2mask(self.config, tmp_bbox)
tmp_mask = tmp_mask[0, 0, :, :]
tmp_mask = np.expand_dims(tmp_mask, axis=2)
tmp_flow = self._flow_tf(tmp_flow)
tmp_flow_masked = tmp_flow * (1. - tmp_mask)
if self.config.INITIAL_HOLE:
tmp_flow_resized = cv2.resize(tmp_flow, (self.size[1] // 2, self.size[0] // 2))
tmp_mask_resized = cv2.resize(tmp_mask, (self.size[1] // 2, self.size[0] // 2), cv2.INTER_NEAREST)
tmp_flow_masked_small = tmp_flow_resized
tmp_flow_masked_small[:, :, 0] = rf.regionfill(tmp_flow_resized[:, :, 0], tmp_mask_resized)
tmp_flow_masked_small[:, :, 1] = rf.regionfill(tmp_flow_resized[:, :, 1], tmp_mask_resized)
tmp_flow_masked = tmp_flow_masked + \
tmp_mask * cv2.resize(tmp_flow_masked_small, (self.size[1], self.size[0]))
flow_masked_set.append(tmp_flow_masked)
flow_set.append(tmp_flow)
mask_set.append(tmp_mask)
mask_set.append(tmp_mask)
tmp_flow_mask_cat = np.concatenate((tmp_flow_masked, tmp_mask), axis=2)
flow_mask_cat_set.append(tmp_flow_mask_cat)
flow_mask_cat = np.concatenate(flow_mask_cat_set, axis=2)
flow_masked = np.concatenate(flow_masked_set, axis=2)
gt_flow = np.concatenate(flow_set, axis=2)
mask = np.concatenate(mask_set, axis=2)
flow_mask_cat = torch.from_numpy(flow_mask_cat).permute(2, 0, 1).contiguous().float()
flow_masked = torch.from_numpy(flow_masked).permute(2, 0, 1).contiguous().float()
gt_flow = torch.from_numpy(gt_flow).permute(2, 0, 1).contiguous().float()
mask = torch.from_numpy(mask).permute(2, 0, 1).contiguous().float()
if self.isTest:
return flow_mask_cat, flow_masked, gt_flow, mask, output_dirs
return flow_mask_cat, flow_masked, gt_flow, mask
def _img_tf(self, img):
img = cv2.resize(img, (self.size[1], self.size[0]))
img = img / 127.5 - 1
return img
def _mask_tf(self, mask):
mask = cv2.resize(mask, (self.size[1], self.size[0]),
interpolation=cv2.INTER_NEAREST)
if self.config.enlarge_mask:
enlarge_kernel = np.ones((self.config.enlarge_kernel, self.config.enlarge_kernel),
np.uint8)
tmp_mask = cv2.dilate(mask[:, :, 0], enlarge_kernel, iterations=1)
mask[(tmp_mask > 0), :] = 255
mask = mask[:,:,0]
mask = np.expand_dims(mask, axis=2)
mask = mask / 255
return mask
def _flow_tf(self, flow):
origin_shape = flow.shape
flow = cv2.resize(flow, (self.res_size[1], self.res_size[0]))
flow[:, :, 0] = flow[:, :, 0].clip(-1. * origin_shape[1], origin_shape[1]) / origin_shape[1] * self.res_size[1]
flow[:, :, 1] = flow[:, :, 1].clip(-1. * origin_shape[0], origin_shape[0]) / origin_shape[0] * self.res_size[0]
return flow