-
Notifications
You must be signed in to change notification settings - Fork 0
/
spine_noER.lua
881 lines (697 loc) · 27.6 KB
/
spine_noER.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
--------------------------------------------------------------------------------
-- Script for PNP simulation on reconstructed spine geometry --
-- (with 1D extensions). --
-- --
-- Author: Markus Breit --
-- Date: 2019-01-16 --
--------------------------------------------------------------------------------
-- load pre-implemented lua functions
ug_load_script("ug_util.lua")
ug_load_script("util/load_balancing_util.lua")
-- init with dimension and algebra
InitUG(3, AlgebraType("CPU", 5))
-----------------------------------------------------
-- parameters steering the simulation and output --
-----------------------------------------------------
-- choice of grid
gridName = util.GetParam("-grid", "grids/spine.ugx")
-- total refinements
numChargeRefs = util.GetParamNumber("-numChargeRefs", 0)
numGlobRefs = util.GetParamNumber("-numGlobRefs", 3)
-- time stepping
startTime = util.GetParamNumber("-start", 0.0, "start time")
endTime = util.GetParamNumber("-end", 0.02, "end time")
dt = util.GetParamNumber("-dt", 1e-4, "time step size")
dtmin = util.GetParamNumber("-dtmin", 1e-7, "minimal admissible time step size")
dtmax = util.GetParamNumber("-dtmax", 1e-2, "maximal admissible time step size")
-- choose outfile directory
outDir = util.GetParam("-outName", "PNP_full")
outDir = outDir.."/"
-- error tolerance and number of stages for Limex iteration
toleratedError = util.GetParamNumber("-tol", 0.001)
nstages = util.GetParamNumber("-nst", 2)
-- additional verbosity, e.g. linear solver output
verbose = util.HasParamOption("-verbose")
-- allowed processor imbalance
imbFactor = util.GetParamNumber("-imb", 1.05, "imbalance factor")
-- specify -vtk to generate vtk output
generateVTKoutput = util.HasParamOption("-vtk")
pstep = util.GetParamNumber("-pstep", dt, "plotting interval")
-- which upwind method to use
upwindMethod = util.GetParam("-upwind", "FULL")
upwindMethod = string.upper(upwindMethod)
if upwindMethod ~= "PNP" and upwindMethod ~= "FULL" and upwindMethod ~= "NO" then
print("Not a viable upwind method: '" .. upwindMethod .. "'.")
exit()
end
-- instationary calculation?
bInstationary = util.HasParamOption("-instat")
-- profiling?
doProfiling = util.HasParamOption("-profile")
SetOutputProfileStats(doProfiling)
-- debugging gmg?
gmgDebug = util.HasParamOption("-gmgDebug")
-- check whether to import solution
bImportSol = util.HasParamOption("-import")
chkptFile = util.GetParam("-chkptFile", "noChkptFileProvided") -- without .lua !!
-------------------------
-- problem constants --
-------------------------
Phi = "Phi"
ion_species = { "K" , "Cl" , "Na" , "A" }
valency = { 1 , -1 , 1 , -1 }
conc_out = { 4 , 123 , 145 , 26 } -- in mol/m^3 == mM
conc_in = { 155 , 5 , 12 , 162 } -- in mol/m^3 == mM
diff_const = { 1.96e-9, 2.03e-9, 1.33e-9, 2.0e-9} -- in m^2/s
reversal_pot = { -0.07 , -0.07 , -0.07 , -0.07 } -- in V
spec_cond = { 0.5 , 0 , 0.5 , 0 } -- in S/m^2
PSD_channel_dens= { 1e-4 , 0 , 1e-4 , 0 } -- in 1
F = 96485 -- in C / mol
R = 8.31451 -- in J / (mol K)
T = 298.15 -- in K
vac_perm = 8.8541878e-12 -- in C / (Vm)
rel_perm_mem = 4.0
rel_perm_rest = 80.0
pot_out = 0.0
pot_in = -0.070
surfCh = util.GetParamNumber("-surfCh", 0.0)
--geometry
radius = 4e-7 -- 400nm
mem_thickness = radius*math.log(1.0 + 1e-8/radius)
-- membrane capacitances
total_conc = 0
for i = 1, 4 do
total_conc = total_conc + valency[i]*valency[i]*conc_in[i]
end
cap_factor = rel_perm_mem * vac_perm / mem_thickness / total_conc
spec_cap = {} -- in F/m^2
for i = 1, 4 do
spec_cap[i] = valency[i]*valency[i]*conc_in[i] * cap_factor
end
-- additional scaling of equations
pot_fac = 1.0/F
-- dimless parameters --
conc_ref = 100.0
pot_ref = R*T/F
diff_ref = 2e-9
len_ref = 1e-6
time_ref = len_ref*len_ref/diff_ref
cond_ref = conc_ref * diff_ref / (pot_ref * len_ref) * F
cap_ref = conc_ref * len_ref / pot_ref * F
flux_ref = diff_ref * conc_ref / len_ref
dimless_startTime = startTime / time_ref
dimless_endTime = endTime / time_ref
dimless_dt = dt / time_ref
dimless_dtmin = dtmin / time_ref
dimless_dtmax = dtmax / time_ref
dimless_conc_out = {}
dimless_conc_in = {}
dimless_diff_const = {}
dimless_reversal_pot = {}
dimless_spec_cond = {}
dimless_spec_cap = {}
for i = 1,4 do
dimless_conc_out[i] = conc_out[i] / conc_ref
dimless_conc_in[i] = conc_in[i] / conc_ref
dimless_diff_const[i] = diff_const[i] / diff_ref
dimless_reversal_pot[i] = reversal_pot[i] / pot_ref
dimless_spec_cond[i] = spec_cond[i] / cond_ref
dimless_spec_cap[i] = spec_cap[i] / cap_ref
end
dimless_pot_out = pot_out / pot_ref
dimless_pot_in = pot_in / pot_ref
dimless_surfCh = surfCh / (conc_ref*len_ref) * pot_fac
dimless_perm_mem = rel_perm_mem * vac_perm * pot_ref / (len_ref*len_ref*conc_ref) * pot_fac
dimless_perm_rest = rel_perm_rest * vac_perm * pot_ref / (len_ref*len_ref*conc_ref) * pot_fac
dimless_radius = radius / len_ref
dimless_mem_thickness = mem_thickness / len_ref
dim_scales = {conc_ref, conc_ref, conc_ref, conc_ref, pot_ref}
print("Reference time : " .. time_ref)
print("Reference length : " .. len_ref)
print("Reference potential : " .. pot_ref)
print("Reference conentration: " .. conc_ref)
----------------------------
-- setup discretization --
----------------------------
dom = Domain()
dom:create_additional_subset_handler("projSH")
LoadDomain(dom, gridName)
neededSubsets = {"in", "out", "mem", "psd", "mem_in", "mem_out", "psd_in", "psd_out",
"bnd_noFlux", "bnd_memNoFlux", "bnd_diri", "intfLeft_constr", "intfRight_constr",
"intfLeft_node1D", "intfRight_node1D", "intfLeft_nodehD", "intfRight_nodehD",
"extLeft", "extRight", "bnd_extLeft", "bnd_extRight", "useless"}
ug_assert(util.CheckSubsets(dom, neededSubsets), "Something wrong with required subsets.")
-- create approximation space
approxSpace = ApproximationSpace(dom)
approxSpace:add_fct(ion_species, "Lagrange", 1) -- add species
approxSpace:add_fct(Phi, "Lagrange", 1) -- add electric potential
approxSpace:init_top_surface()
approxSpace:init_levels()
-- save unknowns as string and vector
all_unknowns = {}
all_unknowns_string = ""
all_ions_string = ""
for i=1, #ion_species do
all_unknowns[i] = ion_species[i]
all_unknowns_string = all_unknowns_string .. ion_species[i]..","
all_ions_string = all_ions_string .. ", " .. ion_species[i]
end
all_unknowns[#all_unknowns + 1] = Phi
all_unknowns_string = all_unknowns_string .. Phi
all_ions_string = string.sub(all_ions_string, 3)
-- name some subdomains
local extra = "out, bnd_diri, bnd_noFlux"
local intra = "in, extLeft, extRight"
local chSurfIn = "mem_in, psd_in"
local chSurfOut = "mem_out, psd_out"
local intfcs = "intfLeft_nodehD, intfLeft_node1D, intfLeft_constr, " ..
"intfRight_nodehD, intfRight_node1D, intfRight_constr"
-- create domain disc
domainDisc = DomainDiscretization(approxSpace)
-- upwind
upwind = PNPUpwind()
upwind:set_alpha(1e-3)
if upwindMethod == "NO" then
upwind = NoUpwind()
elseif upwindMethod == "FULL" then
upwind = FullUpwind()
end
-- inside and outside: fully coupled Nernst-Planck equations
sourceCharge = ScaleAddLinkerNumber()
potentialDisc = ConvectionDiffusionFV1(Phi, "in, out")
potentialDisc:set_stationary()
potentialDisc:set_diffusion(dimless_perm_rest)
potentialDisc:set_source(sourceCharge)
domainDisc:add(potentialDisc)
for i = 1, #ion_species do
-- compute velocity
local vel = ScaleAddLinkerVector()
vel:add(-valency[i]*F/(R*T)*pot_ref*dimless_diff_const[i], potentialDisc:gradient())
-- equation for species
local speciesDisc = ConvectionDiffusionFV1(ion_species[i], "in, out")
speciesDisc:set_diffusion(dimless_diff_const[i])
speciesDisc:set_velocity(vel)
speciesDisc:set_upwind(upwind)
domainDisc:add(speciesDisc)
-- contribution to charge source
sourceCharge:add(valency[i]*F*pot_fac, speciesDisc:value())
end
-- membrane: only electro-static problem for potential, ohmic conductivity on Ranvier nodes
estatPotentialDisc = ConvectionDiffusionFV1(Phi, "mem, psd")
estatPotentialDisc:set_stationary()
estatPotentialDisc:set_diffusion(dimless_perm_mem)
domainDisc:add(estatPotentialDisc)
memSpec = DirichletBoundary()
for i = 1, #ion_species do
memSpec:add(0.0, ion_species[i], "mem, psd, bnd_memNoFlux")
end
--memSpec:add(dimless_conc_in[2], ion_species[2], "psd")
--memSpec:add(dimless_conc_in[4], ion_species[4], "psd")
domainDisc:add(memSpec)
-- add surface charges on filaments and membrane
if dimless_surfCh ~= 0 then
local NeumannBND = UserFluxBoundaryFV1(Phi, chSurfIn..", "..chSurfOut)
NeumannBND:set_flux_function(dimless_surfCh)
NeumannBND:set_stationary()
domainDisc:add(NeumannBND)
end
-- PNP 1D elem disc
dimFacVol = math.pi * dimless_radius * dimless_radius
dimFacSurf = 2.0 * math.pi * dimless_radius
sourceCharge1d = ScaleAddLinkerNumber()
potentialDisc1d = ConvectionDiffusionFV1(Phi, "extLeft, extRight")
potentialDisc1d:set_stationary()
potentialDisc1d:set_diffusion(dimFacVol*dimless_perm_rest)
potentialDisc1d:set_source(dimFacVol*sourceCharge1d)
domainDisc:add(potentialDisc1d)
for i = 1, #ion_species do
-- compute "velocity"
local vel = ScaleAddLinkerVector()
vel:add(-dimFacVol*dimless_diff_const[i]*valency[i]*F/(R*T)*pot_ref, potentialDisc1d:gradient())
-- mass
local mass = ScaleAddLinkerNumber()
mass:add(dimFacSurf*dimless_spec_cap[i]/valency[i], potentialDisc1d:value())
-- source
local source = ScaleAddLinkerNumber()
source:add(-dimFacSurf*dimless_spec_cond[i]/valency[i], potentialDisc1d:value())
source:add(dimFacSurf*dimless_spec_cond[i]/valency[i], dimless_reversal_pot[i])
-- equation for species
local speciesDisc = ConvectionDiffusionFV1(ion_species[i], "extLeft, extRight")
speciesDisc:set_upwind(upwind)
speciesDisc:set_diffusion(dimFacVol*dimless_diff_const[i])
speciesDisc:set_velocity(vel)
speciesDisc:set_mass(mass)
speciesDisc:set_mass_scale(dimFacVol)
if spec_cond[i] ~= 0 then
speciesDisc:set_source(source)
end
domainDisc:add(speciesDisc)
-- contribution to charge source
sourceCharge1d:add(valency[i]*F*pot_fac, speciesDisc:value())
end
-- hD/1D interfaces
PotIntfLeft = AdditiveInterface1D(Phi, "intfLeft_constr", "intfLeft_nodehD", "intfLeft_node1D", {-1, 0, 0})
PotIntfRight = AdditiveInterface1D(Phi, "intfRight_constr", "intfRight_nodehD", "intfRight_node1D", {1, 0, 0})
IonIntfLeft = MultiplicativeInterface1D(all_ions_string, "intfLeft_constr", "intfLeft_nodehD", "intfLeft_node1D", {-1, 0, 0})
IonIntfRight = MultiplicativeInterface1D(all_ions_string, "intfRight_constr", "intfRight_nodehD", "intfRight_node1D", {1, 0, 0})
domainDisc:add(PotIntfLeft)
domainDisc:add(PotIntfRight)
domainDisc:add(IonIntfLeft)
domainDisc:add(IonIntfRight)
-- Dirichlet boundaries
diriBnds = DirichletBoundary()
diriBnds:add(dimless_pot_out, Phi, "bnd_diri, useless")
for i = 1, #ion_species do
diriBnds:add(dimless_conc_out[i], ion_species[i], "bnd_diri, useless")
end
domainDisc:add(diriBnds)
-- extra Dirichlet bnds for the stationary case
statDiriBnds = DirichletBoundary()
statDiriBnds:add(dimless_pot_in, Phi, "bnd_extLeft, bnd_extRight")
for i = 1, #ion_species do
statDiriBnds:add(dimless_conc_in[i], ion_species[i], "bnd_extLeft, bnd_extRight")
end
--statDiriBnds:add(dimless_conc_in[1], ion_species[1], "psd")
--statDiriBnds:add(dimless_conc_in[3], ion_species[3], "psd")
domainDisc:add(statDiriBnds)
-- constraints for adaptivity
hangingConstraint = SymP1Constraints()--OneSideP1Constraints()
domainDisc:add(hangingConstraint)
-- create stationary operator from domain discretization
op_stat = AssembledOperator(domainDisc)
-- time discretization
timeDisc = ThetaTimeStep(domainDisc)
timeDisc:set_theta(1.0) -- 1.0 is implicit Euler
------------------
-- solver setup --
------------------
-- debug writer
dbgWriter = GridFunctionDebugWriter(approxSpace)
dbgWriter:set_base_dir(outDir)
dbgWriter:set_vtk_output(false)
-- linear convergence check
convCheck = ConvCheck()
convCheck:set_minimum_defect(1e-13)
convCheck:set_reduction(1e-06)
convCheck:set_verbose(verbose)
--[[
convCheck = CompositeConvCheck(approxSpace, 10000, 1e-50, 1e-04)
convCheck:set_component_check(Phi, 1e-13, 1e-06)
convCheck:set_component_check(ion_species, 1e-13, 1e-06)
--convCheck:set_rest_check(1e-13, 1e-04)
convCheck:set_verbose(verbose)
convCheck:set_adaptive(true)
--]]
linearSolver = BiCGStab()--LinearSolver()
linearSolver:set_convergence_check(convCheck)
--linearSolver:set_debug(dbgWriter)
gmg = GeometricMultiGrid(approxSpace)
gmg:set_discretization(domainDisc)
gmg:set_base_level(0)
gmg:set_gathered_base_solver_if_ambiguous(true)
gmg:set_base_solver(SuperLU())
smoother = GaussSeidel()
smoother:enable_consistent_interfaces(true)
--smoother:set_sort(true)
gmg:set_smoother(smoother)
gmg:set_smooth_on_surface_rim(true)
gmg:set_cycle_type(1)
gmg:set_num_presmooth(3)
gmg:set_num_postsmooth(3)
--gmg:set_rap(true) -- causes error in base solver!!
if gmgDebug then
gmg:set_debug(dbgWriter)
end
linearSolver:set_preconditioner(gmg)
convCheck:set_maximum_steps(100)
--- non-linear solver ---
newtonConvCheck = CompositeConvCheck(approxSpace, 10, 1e-22, 1e-10)
-- minDefect values painstakingly estimated: do not change!
newtonConvCheck:set_component_check(Phi, 1e-9, 1e-10)
newtonConvCheck:set_component_check(ion_species, 2e-12*math.pow(1, 2), 1e-10)
newtonConvCheck:set_verbose(true)
newtonConvCheck:set_time_measurement(true)
newtonConvCheck:set_adaptive(true)
-- Newton solver
newtonSolver = NewtonSolver()
newtonSolver:set_linear_solver(linearSolver)
newtonSolver:set_convergence_check(newtonConvCheck)
--newtonSolver:set_debug(dbgWriter)
---------------------------------
-- refinement & distribution --
---------------------------------
-- in parallel environments: use a load balancer to distribute the grid
-- actual refinement and load balancing after setup of disc.
balancer.partitioner = "parmetis"
balancer.staticProcHierarchy = true
balancer.firstDistLvl = 0
balancer.redistSteps = 2
balancer.maxDistLvl = 4
balancer.firstDistProcs = 48
balancer.redistProcs = 64
balancer.parallelElementThreshold = 8
balancer.imbalanceFactor = imbFactor
balancer.ParseParameters()
balancer.PrintParameters()
loadBalancer = balancer.CreateLoadBalancer(dom)
-- refinement and distribution --
refiner = HangingNodeDomainRefiner(dom)
-- configure distro adjuster
ida = PNPDistroManager(approxSpace)
ida:add_interface(PotIntfLeft)
ida:add_interface(PotIntfRight)
ida:add_interface(IonIntfLeft)
ida:add_interface(IonIntfRight)
ida:set_threshold_ratio(0.25) -- anisotropy threshold (elements below will be glued to their neighbors)
cdgm = ClusteredDualGraphManager()
cdgm:add_unificator(SiblingUnificator())
cdgm:add_unificator(ida)
-- add distro adjuster to distributed grid manager to be considered when distributing
set_distro_adjuster(dom, ida)
if loadBalancer ~= nil and balancer.partitioner == "parmetis" then
balancer.defaultPartitioner:set_dual_graph_manager(cdgm)
end
-- set interface refinement adjuster
irma = InterfaceRefMarkAdjuster()
irma:set_subset_handler(dom:subset_handler())
irma:add_interfaces({PotIntfLeft, PotIntfRight, IonIntfLeft, IonIntfRight})
add_interface_ref_mark_adjuster(refiner, irma)
-- set extension refinement adjuster
erma = ExtensionRefMarkAdjuster(dom, {1,0,0}, "useless")
add_extension_ref_mark_adjuster(refiner, erma)
-- initial rebalancing
if loadBalancer ~= nil then
balancer.qualityRecordName = "init"
balancer.Rebalance(dom, loadBalancer)
end
-- charge refinements
for i = 1, numChargeRefs do
MarkAlongSurface(refiner, dom, {"mem_in", "psd_in", "mem_out", "psd_out"}, {"in", "in", "out", "out"})
refiner:refine()
-- rebalance
if loadBalancer ~= nil then
balancer.qualityRecordName = "chrgRef " .. i
balancer.Rebalance(dom, loadBalancer)
end
end
-- global refinements
for i = 1, numGlobRefs do
MarkGlobal(refiner, dom)
refiner:refine()
-- rebalance
if loadBalancer ~= nil then
balancer.qualityRecordName = "globRef " .. i
balancer.Rebalance(dom, loadBalancer)
end
end
--TestDomainInterfaces(dom)
print()
approxSpace:init_levels() -- re-init for new levels
approxSpace:init_surfaces()
approxSpace:init_top_surface()
approxSpace:print_statistic()
print()
print(dom:domain_info():to_string())
if loadBalancer ~= nil then
loadBalancer:estimate_distribution_quality()
loadBalancer:print_quality_records()
end
-- in highly refined case, this takes forever AND has a REALLY big result
--offsetForGridHierarchy = 5.0
--SaveGridHierarchyTransformed(dom:grid(), dom:subset_handler(), outDir.."grid/refined_grid_hierarchy_lv".. numGlobRefs+numChargeRefs .."_p" .. ProcRank() .. ".ugx", offsetForGridHierarchy)
--SaveParallelGridLayout(dom:grid(), outDir.."grid/parallel_grid_layout_lv".. numGlobRefs+numChargeRefs .."_p"..ProcRank()..".ugx", offsetForGridHierarchy)
-- we can only rescale AFTER all refinements (otherwise, projectors are scaled incorrectly)
if len_ref ~= 1e-6 then -- domain is saved in units of um
RescaleDomain(dom, 1e-6/len_ref)
end
-- we can only sort the dofs AFTER all refinements (otherwise, the sorting is not performed on highest levels)
print("\nordering using Cuthill-McKee\n")
OrderCuthillMcKee(approxSpace, true) -- this is essential (at least in one 2d spine problem)!
-- update interfaces
PotIntfLeft:update()
PotIntfRight:update()
IonIntfLeft:update()
IonIntfRight:update()
----------------------
-- Initial values --
----------------------
u = GridFunction(approxSpace)
u:set(0.0)
u_dispose = u:clone()
InterpolateInner(dimless_pot_in, u, "Phi", intra .. ", " .. intfcs .. ", bnd_extLeft, bnd_extRight")
d_phi = 0.5*math.abs(dimless_pot_in)
InterpolateInner(dimless_pot_in-d_phi, u, "Phi", chSurfIn..", mem, bnd_memNoFlux")
InterpolateInner(dimless_pot_out-d_phi, u, "Phi", chSurfOut)
for i = 1, #ion_species do
InterpolateInner(dimless_conc_out[i], u, ion_species[i], extra)
InterpolateInner(dimless_conc_in[i] , u, ion_species[i], intra .. ", "
.. intfcs .. ", bnd_extLeft, bnd_extRight")
end
cations = {[1] = ion_species[1], [3] = ion_species[3]}
anions = {[2] = ion_species[2], [4] = ion_species[4]}
for i,cat in pairs(cations) do
InterpolateInner(2*dimless_conc_out[i], u, cat, chSurfOut)
InterpolateInner(2*dimless_conc_in[i], u, cat, chSurfIn)
end
for i,an in pairs(anions) do
InterpolateInner(0.5*dimless_conc_out[i], u, an, chSurfOut)
InterpolateInner(0.5*dimless_conc_in[i], u, an, chSurfIn)
end
-------------------------------
-- vtk output preparations --
-------------------------------
out = VTKOutput()
out:select_all(true)
out_flux = VTKOutput()
solAdjuster = Domain1dSolutionAdjuster()
solAdjuster:add_constrained_subset("useless")
solAdjuster:add_constrainer_subset("extLeft")
solAdjuster:add_constrainer_subset("intfLeft_node1D")
solAdjuster:add_constrainer_subset("extRight")
solAdjuster:add_constrainer_subset("intfRight_node1D")
solAdjuster:set_sorting_direction({1,0,0})
-- init neck recorder
nr = NeckRecorder(approxSpace)
nr:set_cytosolic_subset("in")
nr:add_measurement_zone(0.5*1e-6/len_ref, "base")
nr:add_measurement_zone(1.2*1e-6/len_ref, "mid")
nr:add_measurement_zone(1.9*1e-6/len_ref, "head")
nr:set_diffusion_constants({dimless_diff_const[1], dimless_diff_const[3],
dimless_diff_const[2], dimless_diff_const[4]})
nr:set_convection_constants(
{-dimless_diff_const[1]*valency[1]*F/(R*T)*pot_ref,
-dimless_diff_const[3]*valency[3]*F/(R*T)*pot_ref,
-dimless_diff_const[2]*valency[2]*F/(R*T)*pot_ref,
-dimless_diff_const[4]*valency[4]*F/(R*T)*pot_ref})
nr:set_record_individual_currents(true)
nr:set_temperature(T)
nr:set_upwind(upwind)
-------------------------------------
-- calculate stationary solution --
-------------------------------------
if bImportSol then
cp = util.ReadCheckpoint(u, chkptFile)
else
newtonSolver:init(op_stat)
if not newtonSolver:apply(u) then
print("Newton Solver failed.")
if generateVTKoutput then
ScaleGF(u_dispose, u, dim_scales)
solAdjuster:adjust_solution(u_dispose)
out:print(outDir.."vtk/failedSolution", u_dispose, 0, 0.0)
end
if doProfiling then
WriteProfileData(outDir .."pd.pdxml")
end
exit()
end
-- export stationary solution
--util.WriteCheckpoint(u, 0, {dimless_time = 0.0, step = 0}, outDir .. "chkpt")
end
-- write stationary solution
ScaleGF(u_dispose, u, dim_scales)
if generateVTKoutput then
solAdjuster:adjust_solution(u_dispose)
out:print(outDir.."vtk/solution", u_dispose, 0, 0.0)
end
--take_measurement(u_dispose, 0.0, "psd_in", "Phi, K, Na, Cl, A", outDir.."meas/sol")
-- record initial values
nr:record_current(outDir .."meas/neck_current.dat", 0.0, u, F * diff_ref*conc_ref * len_ref)
nr:record_potential(outDir .."meas/neck_pot.dat", 0.0, u, pot_ref)
nr:record_concentrations(outDir .."meas/neck_concs.dat", 0.0, u, conc_ref)
-------------------------
-- compute time loop --
-------------------------
-- continue only if -instat flag is set
if bInstationary == true then
-- synaptic activation --
local t_on = 0.0
local tau = 2.5e-3 -- in s
local t_on_dimless = t_on / time_ref
local tau_dimless = tau / time_ref
local period_dimless = 0.01 / time_ref
local tau_dimless_nmdar = 0.15 / time_ref
function channelOpen(x,y,z,t)
-- strong NMDAR
--return math.exp(-t/tau_dimless_nmdar)
-- tetanic stimulation
local t_p = t % period_dimless
--return math.exp(-t_p / tau_dimless)
-- AMPAR
return (t - t_on_dimless) / tau_dimless * math.exp(-(t - t_on_dimless - tau_dimless) / tau_dimless)
end
---[[
vmAtSyn = pot_in
kInAtSyn = dimless_conc_in[1]
kOutAtSyn = dimless_conc_out[1]
naInAtSyn = dimless_conc_in[3]
naOutAtSyn = dimless_conc_out[3]
psdInArea = Integral(1.0, u, "psd_in")
psdOutArea = Integral(1.0, u, "psd_out")
function psd_flux_k_in(x,y,z,t,si)
local exp = math.exp(F/(R*T) * vmAtSyn)
return - channelOpen(0,0,0,t) * PSD_channel_dens[1] * dimless_diff_const[1] / 1e-8 * len_ref *
F/(R*T) * vmAtSyn * (kOutAtSyn - kInAtSyn * exp) / (1.0 - exp)
end
function psd_flux_k_out(x,y,z,t,si)
return - psd_flux_k_in(x,y,z,t,si)
end
function psd_flux_na_in(x,y,z,t,si)
local exp = math.exp(F/(R*T) * vmAtSyn)
return - channelOpen(0,0,0,t) * PSD_channel_dens[3] * dimless_diff_const[3] / 1e-8 * len_ref *
F/(R*T) * vmAtSyn * (naOutAtSyn - naInAtSyn * exp) / (1.0 - exp)
end
function psd_flux_na_out(x,y,z,t,si)
return - psd_flux_na_in(x,y,z,t,si)
end
PSD_NeumannKInner = UserFluxBoundaryFV1(ion_species[1], "psd_in")
PSD_NeumannKInner:set_flux_function("psd_flux_k_in")
PSD_NeumannKOuter = UserFluxBoundaryFV1(ion_species[1], "psd_out")
PSD_NeumannKOuter:set_flux_function("psd_flux_k_out")
domainDisc:add(PSD_NeumannKInner)
domainDisc:add(PSD_NeumannKOuter)
PSD_NeumannNaInner = UserFluxBoundaryFV1(ion_species[3], "psd_in")
PSD_NeumannNaInner:set_flux_function("psd_flux_na_in")
PSD_NeumannNaOuter = UserFluxBoundaryFV1(ion_species[3], "psd_out")
PSD_NeumannNaOuter:set_flux_function("psd_flux_na_out")
domainDisc:add(PSD_NeumannNaInner)
domainDisc:add(PSD_NeumannNaOuter)
--]]
--[[
lunChannelOpen = LuaUserNumber("channelOpen")
function channelOpenTensor(x,y,z,t,si)
local p = channelOpen(x,y,z,t,si)
return p, 0, 0,
0, p, 0,
0, 0, p
end
lumChannelOpen = LuaUserMatrix("channelOpenTensor")
psdInArea = Integral(1.0, u, "psd_in")
areaFactor = 0.09275 / psdInArea
psdVel1 = ScaleAddLinkerVector()
psdVel1:add(-valency[1]*F/(R*T)*pot_ref*dimless_diff_const[1]*PSD_channel_dens[1]*areaFactor*lunChannelOpen, estatPotentialDisc:gradient())
psdSpeciesDisc1 = ConvectionDiffusionFV1(ion_species[1], "psd")
psdSpeciesDisc1:set_diffusion(dimless_diff_const[1]*PSD_channel_dens[1]*areaFactor*lumChannelOpen)
psdSpeciesDisc1:set_velocity(psdVel1)
psdSpeciesDisc1:set_upwind(upwind)
domainDisc:add(psdSpeciesDisc1)
psdVel3 = ScaleAddLinkerVector()
psdVel3:add(-valency[3]*F/(R*T)*pot_ref*dimless_diff_const[3]*PSD_channel_dens[3]*areaFactor*lunChannelOpen, estatPotentialDisc:gradient())
psdSpeciesDisc3 = ConvectionDiffusionFV1(ion_species[3], "psd")
psdSpeciesDisc3:set_diffusion(PSD_channel_dens[3]*PSD_channel_dens[3]*areaFactor*lumChannelOpen)
psdSpeciesDisc3:set_velocity(psdVel3)
psdSpeciesDisc3:set_upwind(upwind)
domainDisc:add(psdSpeciesDisc3)
--]]
-- remove Dirichlet bnd from extensions
-- and replace by Neumann-0 (which happens implicitly by doing nothing)
-- (GMG transfer operators must be updated!)
domainDisc:remove(statDiriBnds)
gmg:force_reinit()
convCheck:set_reduction(1e-6)
-- create instationary operator from time discretization
op = AssembledOperator(timeDisc)
if bImportSol then
dimless_time = cp.myData.dimless_time
step = cp.myData.step
else
dimless_time = dimless_startTime
step = 0
end
-- LIMEX setup --
-- create instationary solver
newtonSolver = LimexNewtonSolver()
newtonSolver:set_linear_solver(linearSolver)
newtonSolver:init(op)
stageNSteps = {} -- number of time steps for each stage
for i = 1, nstages do stageNSteps[i] = i end
limex = LimexTimeIntegrator(nstages)
for i = 1, nstages do
limex:add_stage(stageNSteps[i], newtonSolver, domainDisc)
end
limex:set_tolerance(toleratedError)
limex:set_time_step(dimless_dt)
limex:set_dt_min(dimless_dtmin)
limex:set_dt_max(dimless_dtmax)
limex:set_increase_factor(2.0)
limex:set_reduction_factor(0.1)
limex:set_stepsize_greedy_order_factor(1)
limex:set_stepsize_safety_factor(0.25)
-- GridFunction error estimator (relative norm)
errorEvalPhi = H1ComponentSpace("Phi")--H1SemiComponentSpace("Phi", 3, dimless_perm_rest) -- function name, order, weight
errorEvalK = H1ComponentSpace("K")
errorEvalNa = H1ComponentSpace("Na")
errorEvalCl = H1ComponentSpace("Cl")
errorEvalA = H1ComponentSpace("A")
limexEstimator = GridFunctionEstimator()--toleratedError)
limexEstimator:add(errorEvalPhi)
limexEstimator:add(errorEvalK)
limexEstimator:add(errorEvalNa)
limexEstimator:add(errorEvalCl)
limexEstimator:add(errorEvalA)
limex:add_error_estimator(limexEstimator)
-- for post-processing after each time step
function postTimestepActions(step, time, dt)
local curSol = preAndPostActions:get_current_solution()
-- plot solution every pstep seconds
ScaleGF(u_dispose, curSol, dim_scales) -- scale to usual units
if generateVTKoutput then
solAdjuster:adjust_solution(u_dispose)
out:print(outDir.."vtk/solution", u_dispose, step, time*time_ref)
end
--take_measurement(u_dispose, time*time_ref, "psd_in", "Phi, K, Na, Cl, A", outDir.."meas/sol")
-- record current and potential
nr:record_current(outDir .."meas/neck_current.dat", time*time_ref, curSol, F * diff_ref*conc_ref * len_ref)
nr:record_potential(outDir .."meas/neck_pot.dat", time*time_ref, curSol, pot_ref)
nr:record_concentrations(outDir .."meas/neck_concs.dat", time*time_ref, curSol, conc_ref)
-- export stationary solution
--util.WriteCheckpoint(curSol, time*time_ref, {dimless_time = time, step = step}, outDir .. "chkpt")
print("Current (real) time: " .. time*time_ref .. ", last dt: " .. dt*time_ref)
return 0
end
function preTimestepActions(step, time, dt)
local curSol = preAndPostActions:get_current_solution()
vmAtSyn = pot_ref * (Integral(curSol, Phi, "psd_in") / psdInArea
- Integral(curSol, Phi, "psd_out") / psdOutArea)
---[[
kInAtSyn = Integral(curSol, "K", "psd_in") / psdInArea
kOutAtSyn = Integral(curSol, "K", "psd_out") / psdOutArea
naInAtSyn = Integral(curSol, "Na", "psd_in") / psdInArea
naOutAtSyn = Integral(curSol, "Na", "psd_out") / psdOutArea
--]]
return 0
end
preAndPostActions = LuaCallbackObserver()
preAndPostActions:set_callback_pre("preTimestepActions")
preAndPostActions:set_callback_post("postTimestepActions")
limex:attach_observer(preAndPostActions)
-- solve problem
limex:apply(u, dimless_endTime, u, dimless_time)
end -- if bInstationary
-- end timeseries, produce gathering file
if generateVTKoutput then
out:write_time_pvd(outDir .. "vtk/solution", u)
end
if doProfiling then
WriteProfileData(outDir .."pd.pdxml")
end