-
Notifications
You must be signed in to change notification settings - Fork 250
/
Copy pathsegment.py
239 lines (200 loc) · 8.69 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
'''
This module defines :class:`Segment`, a container for data sharing a common
time basis.
:class:`Segment` derives from :class:`Container`,
from :module:`neo.core.container`.
'''
from datetime import datetime
import numpy as np
from copy import deepcopy
from neo.core.container import Container
from neo.core.spiketrainlist import SpikeTrainList
class Segment(Container):
'''
A container for data sharing a common time basis.
A :class:`Segment` is a heterogeneous container for discrete or continuous
data sharing a common clock (time basis) but not necessary the same
sampling rate, start or end time.
*Usage*::
>>> from neo.core import Segment, SpikeTrain, AnalogSignal
>>> from quantities import Hz, s
>>>
>>> seg = Segment(index=5)
>>>
>>> train0 = SpikeTrain(times=[.01, 3.3, 9.3], units='sec', t_stop=10)
>>> seg.spiketrains.append(train0)
>>>
>>> train1 = SpikeTrain(times=[100.01, 103.3, 109.3], units='sec',
... t_stop=110)
>>> seg.spiketrains.append(train1)
>>>
>>> sig0 = AnalogSignal(signal=[.01, 3.3, 9.3], units='uV',
... sampling_rate=1*Hz)
>>> seg.analogsignals.append(sig0)
>>>
>>> sig1 = AnalogSignal(signal=[100.01, 103.3, 109.3], units='nA',
... sampling_period=.1*s)
>>> seg.analogsignals.append(sig1)
*Required attributes/properties*:
None
*Recommended attributes/properties*:
:name: (str) A label for the dataset.
:description: (str) Text description.
:file_origin: (str) Filesystem path or URL of the original data file.
:file_datetime: (datetime) The creation date and time of the original
data file.
:rec_datetime: (datetime) The date and time of the original recording
:index: (int) You can use this to define a temporal ordering of
your Segment. For instance you could use this for trial numbers.
Note: Any other additional arguments are assumed to be user-specific
metadata and stored in :attr:`annotations`.
*Properties available on this object*:
:all_data: (list) A list of all child objects in the :class:`Segment`.
*Container of*:
:class:`Epoch`
:class:`Event`
:class:`AnalogSignal`
:class:`IrregularlySampledSignal`
:class:`SpikeTrain`
'''
_data_child_objects = ('AnalogSignal',
'Epoch', 'Event',
'IrregularlySampledSignal', 'SpikeTrain', 'ImageSequence')
_parent_objects = ('Block',)
_recommended_attrs = ((('file_datetime', datetime),
('rec_datetime', datetime),
('index', int)) +
Container._recommended_attrs)
_repr_pretty_containers = ('analogsignals',)
def __init__(self, name=None, description=None, file_origin=None,
file_datetime=None, rec_datetime=None, index=None,
**annotations):
'''
Initialize a new :class:`Segment` instance.
'''
super().__init__(name=name, description=description,
file_origin=file_origin, **annotations)
self.spiketrains = SpikeTrainList(segment=self)
self.file_datetime = file_datetime
self.rec_datetime = rec_datetime
self.index = index
# t_start attribute is handled as a property so type checking can be done
@property
def t_start(self):
'''
Time when first signal begins.
'''
t_starts = [sig.t_start for sig in self.analogsignals +
self.spiketrains + self.irregularlysampledsignals]
for e in self.epochs + self.events:
if hasattr(e, 't_start'): # in case of proxy objects
t_starts += [e.t_start]
elif len(e) > 0:
t_starts += [e.times[0]]
# t_start is not defined if no children are present
if len(t_starts) == 0:
return None
t_start = min(t_starts)
return t_start
# t_stop attribute is handled as a property so type checking can be done
@property
def t_stop(self):
'''
Time when last signal ends.
'''
t_stops = [sig.t_stop for sig in self.analogsignals +
self.spiketrains + self.irregularlysampledsignals]
for e in self.epochs + self.events:
if hasattr(e, 't_stop'): # in case of proxy objects
t_stops += [e.t_stop]
elif len(e) > 0:
t_stops += [e.times[-1]]
# t_stop is not defined if no children are present
if len(t_stops) == 0:
return None
t_stop = max(t_stops)
return t_stop
def time_slice(self, t_start=None, t_stop=None, reset_time=False, **kwargs):
"""
Creates a time slice of a Segment containing slices of all child
objects.
Parameters
----------
t_start: Quantity
Starting time of the sliced time window.
t_stop: Quantity
Stop time of the sliced time window.
reset_time: bool, optional, default: False
If True the time stamps of all sliced objects are set to fall
in the range from t_start to t_stop.
If False, original time stamps are retained.
**kwargs
Additional keyword arguments used for initialization of the sliced
Segment object.
Returns
-------
subseg: Segment
Temporal slice of the original Segment from t_start to t_stop.
"""
subseg = Segment(**kwargs)
for attr in ['file_datetime', 'rec_datetime', 'index',
'name', 'description', 'file_origin']:
setattr(subseg, attr, getattr(self, attr))
subseg.annotations = deepcopy(self.annotations)
if t_start is None:
t_start = self.t_start
if t_stop is None:
t_stop = self.t_stop
t_shift = - t_start
# cut analogsignals and analogsignalarrays
for ana_id in range(len(self.analogsignals)):
if hasattr(self.analogsignals[ana_id], '_rawio'):
ana_time_slice = self.analogsignals[ana_id].load(time_slice=(t_start, t_stop))
else:
ana_time_slice = self.analogsignals[ana_id].time_slice(t_start, t_stop)
if reset_time:
ana_time_slice = ana_time_slice.time_shift(t_shift)
subseg.analogsignals.append(ana_time_slice)
# cut irregularly sampled signals
for irr_id in range(len(self.irregularlysampledsignals)):
if hasattr(self.irregularlysampledsignals[irr_id], '_rawio'):
ana_time_slice = self.irregularlysampledsignals[irr_id].load(
time_slice=(t_start, t_stop))
else:
ana_time_slice = self.irregularlysampledsignals[irr_id].time_slice(t_start, t_stop)
if reset_time:
ana_time_slice = ana_time_slice.time_shift(t_shift)
subseg.irregularlysampledsignals.append(ana_time_slice)
# cut spiketrains
for st_id in range(len(self.spiketrains)):
if hasattr(self.spiketrains[st_id], '_rawio'):
st_time_slice = self.spiketrains[st_id].load(time_slice=(t_start, t_stop))
else:
st_time_slice = self.spiketrains[st_id].time_slice(t_start, t_stop)
if reset_time:
st_time_slice = st_time_slice.time_shift(t_shift)
subseg.spiketrains.append(st_time_slice)
# cut events
for ev_id in range(len(self.events)):
if hasattr(self.events[ev_id], '_rawio'):
ev_time_slice = self.events[ev_id].load(time_slice=(t_start, t_stop))
else:
ev_time_slice = self.events[ev_id].time_slice(t_start, t_stop)
if reset_time:
ev_time_slice = ev_time_slice.time_shift(t_shift)
# appending only non-empty events
if len(ev_time_slice):
subseg.events.append(ev_time_slice)
# cut epochs
for ep_id in range(len(self.epochs)):
if hasattr(self.epochs[ep_id], '_rawio'):
ep_time_slice = self.epochs[ep_id].load(time_slice=(t_start, t_stop))
else:
ep_time_slice = self.epochs[ep_id].time_slice(t_start, t_stop)
if reset_time:
ep_time_slice = ep_time_slice.time_shift(t_shift)
# appending only non-empty epochs
if len(ep_time_slice):
subseg.epochs.append(ep_time_slice)
subseg.create_relationship()
return subseg