@@ -10,9 +10,9 @@ conda_env_local.yml file can be used to create an anaconda environment to run th
10
10
11
11
## Training script:
12
12
13
- To train the One-De model on cityscapes dataset: < br />
13
+ To train the One-De model on cityscapes dataset:
14
14
15
- python train.py --batch-size 8 --workers 8 --data-folder /DATA_DIR/Cityscapes --crop-size 512 1024 --checkname train_cs --config-file ./model_cfgs/cityscapes/one_de.yaml --epochs 140 --lr .0001 --output-dir OUTPUT_DIR --lr-strategy stepwise --lr-decay 98 126 --base-optimizer RAdam --dataset cityscapes
15
+ python train.py --batch-size 8 --workers 8 --data-folder /DATA_DIR/Cityscapes --crop-size 512 1024 --checkname train_cs --config-file ./model_cfgs/cityscapes/one_de.yaml --epochs 140 --lr .0001 --output-dir OUTPUT_DIR --lr-strategy stepwise --lr-decay 98 126 --base-optimizer RAdam --dataset cityscapes
16
16
<br />
17
17
Other model configs can be found in 'model_cfgs' directory.
18
18
@@ -24,24 +24,25 @@ Models can be evaluated using --eval-only arg along with train script.
24
24
25
25
## Get CKA similarities and task groupings:
26
26
The following code runs grouping using seperate decoder (Sep-De). <br />
27
- python explain.py --batch-size 4 --workers 0 --crop-size 480 640 --config-file ./model_cfgs/cityscapes/sep_de_group.yaml --resume MODEL_DIR/model_latest_140.pth --data-folder /DATA_DIR/NYUv2 --data-folder-1 /DATA_DIR/NYUv2/image/train --explainer-name CKA --compare-tasks --dataset cityscapes
27
+
28
+ python explain.py --batch-size 4 --workers 0 --crop-size 480 640 --config-file ./model_cfgs/cityscapes/sep_de_group.yaml --resume MODEL_DIR/model_latest_140.pth --data-folder /DATA_DIR/NYUv2 --data-folder-1 /DATA_DIR/NYUv2/image/train --explainer-name CKA --compare-tasks --dataset cityscapes
28
29
29
30
## Cite Our Work
30
31
31
32
If you find the code concerning Progressive Decoder Fusion (PDF) useful in your research, please consider citing our paper:
32
33
33
- @InProceedings {pmlr-v199-gurulingan22a,
34
- title = {Curbing Task Interference using Representation Similarity-Guided Multi-Task Feature Sharing},
35
- author = {Gurulingan, Naresh Kumar and Arani, Elahe and Zonooz, Bahram},
36
- booktitle = {Proceedings of The 1st Conference on Lifelong Learning Agents},
37
- pages = {937--951},
38
- year = {2022},
39
- editor = {Chandar, Sarath and Pascanu, Razvan and Precup, Doina},
40
- volume = {199},
41
- series = {Proceedings of Machine Learning Research},
42
- month = {22--24 Aug},
43
- publisher = {PMLR},
44
- pdf = {https://proceedings.mlr.press/v199/gurulingan22a/gurulingan22a.pdf} ,
45
- url = {https://proceedings.mlr.press/v199/gurulingan22a.html} ,
46
- }
34
+ @InProceedings{pmlr-v199-gurulingan22a,
35
+ title = {Curbing Task Interference using Representation Similarity-Guided Multi-Task Feature Sharing},
36
+ author = {Gurulingan, Naresh Kumar and Arani, Elahe and Zonooz, Bahram},
37
+ booktitle = {Proceedings of The 1st Conference on Lifelong Learning Agents},
38
+ pages = {937--951},
39
+ year = {2022},
40
+ editor = {Chandar, Sarath and Pascanu, Razvan and Precup, Doina},
41
+ volume = {199},
42
+ series = {Proceedings of Machine Learning Research},
43
+ month = {22--24 Aug},
44
+ publisher = {PMLR},
45
+ pdf = {https://proceedings.mlr.press/v199/gurulingan22a/gurulingan22a.pdf},
46
+ url = {https://proceedings.mlr.press/v199/gurulingan22a.html},
47
+ }
47
48
0 commit comments