- INT8 weight only PTQ
- High-performance GEMM kernels from FasterTransformer, original code
- No need for quantization training
- Optimized attention layer using Flash-Attention V2
- Easy to use, adapt to your pytorch model with one line of code
- cuda:>=11.4
- python:>=3.8
- gcc:>= 7.4.0
- torch:>=1.14.0
- transformers:>=4.27.0
The above environment is the minimum configuration, and it is best to use a newer version.
Recommend using Dockerfile.
$ git clone https://github.com/NetEase-FuXi/EETQ.git
$ cd EETQ/
$ git submodule update --init --recursive
$ pip install .
If your machine has less than 96GB of RAM and lots of CPU cores, ninja
might
run too many parallel compilation jobs that could exhaust the amount of RAM. To
limit the number of parallel compilation jobs, you can set the environment
variable MAX_JOBS
:
$ MAX_JOBS=4 pip install .
- Quantize torch model
from eetq.utils import eet_quantize
eet_quantize(torch_model)
- Quantize torch model and optimize with flash attention
...
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16)
from eetq.utils import eet_accelerator
eet_accelerator(model, quantize=True, fused_attn=True, dev="cuda:0")
model.to("cuda:0")
# inference
res = model.generate(...)
- Use EETQ in TGI(text-generation-inference) see this
--quantize eetq
lorax-launcher --model-id mistralai/Mistral-7B-v0.1 --quantize eetq ...
Model:
- llama-13b (test on 3090)