-
Notifications
You must be signed in to change notification settings - Fork 63
/
Module.jl
121 lines (111 loc) · 3.74 KB
/
Module.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
###############################################################################
#
# Module.jl : Generic modules over Euclidean domains
#
###############################################################################
###############################################################################
#
# Basic manipulation
#
###############################################################################
# The .v field in FPModuleElem has an abstract type. We introduce an internal
# type stable accessor function to make the compiler happy.
@inline function _matrix(v::AbstractAlgebra.FPModuleElem{T}) where T
return (v.v)::dense_matrix_type(T)
end
@doc raw"""
rels(M::AbstractAlgebra.FPModule{T}) where T <: RingElement
Return a vector of all the relations between generators of the given
module, where each relation is given as row matrix. The relation matrix
whose rows are the returned relations will be in reduced form (hnf/rref).
"""
rels(M::AbstractAlgebra.FPModule{T}) where T <: RingElement = M.rels::Vector{dense_matrix_type(T)}
@doc raw"""
is_compatible(M::AbstractAlgebra.FPModule{T}, N::AbstractAlgebra.FPModule{T}) where T <: RingElement
Return `true, P` if the given modules are compatible, i.e. that they are
(transitively) submodules of the same module, P. Otherwise return `false, M`.
"""
function is_compatible(M::AbstractAlgebra.FPModule{T}, N::AbstractAlgebra.FPModule{T}) where T <: RingElement
check_parent(M, N)
M1 = M
M2 = N
while isa(M1, Submodule)
M2 = N
while isa(M2, Submodule)
if M1 === M2
return true, M1
end
M2 = supermodule(M2)
end
M1 = supermodule(M1)
end
while isa(M2, Submodule)
M2 = supermodule(M2)
end
if M1 === M2
return true, M1
end
return false, M
end
@doc raw"""
is_submodule(M::AbstractAlgebra.FPModule{T}, N::AbstractAlgebra.FPModule{T}) where T <: RingElement
Return `true` if $N$ was constructed as a submodule of $M$. The relation
is taken transitively (i.e. subsubmodules are submodules for the purposes
of this relation, etc). The module $M$ is also considered a submodule of
itself for this relation.
"""
function is_submodule(M::AbstractAlgebra.FPModule{T}, N::AbstractAlgebra.FPModule{T}) where T <: RingElement
check_parent(M, N)
if M === N
return true
end
while isa(N, Submodule)
N = supermodule(N)
if M === N
return true
end
end
return false
end
###############################################################################
#
# Helper functions
#
###############################################################################
# Assumes M is in reduced form (hnf/rref). Removes zero rows. Returns a tuple
# gen_cols, culled, pivots where all rows and columns corresponding to unit
# pivots have been removed, gen_cols is a list of columns without unit pivots,
# culled is an array of row (indices) that have not been removed and pivots[i]
# is the pivot column of the $i$-th row of the culled matrix.
function cull_matrix(M::AbstractAlgebra.MatElem{T}) where T <: RingElement
# count the nonzero rows
nrels = nrows(M)
while nrels > 0 && is_zero_row(M, nrels)
nrels -= 1
end
# find relations with non-unit pivot
gen_cols = Vector{Int}(undef, 0)
culled = Vector{Int}(undef, 0)
pivots = Vector{Int}(undef, 0)
col = 1
new_col = 1
for i in 1:nrels
while is_zero_entry(M, i, col)
push!(gen_cols, col)
col += 1
new_col += 1
end
if !is_unit(M[i, col])
push!(culled, i)
push!(gen_cols, col)
push!(pivots, new_col)
new_col += 1
end
col += 1
end
while col <= ncols(M)
push!(gen_cols, col)
col += 1
end
return gen_cols, culled, pivots
end