-
Notifications
You must be signed in to change notification settings - Fork 63
/
FreeAssociativeAlgebra.jl
714 lines (622 loc) · 20.6 KB
/
FreeAssociativeAlgebra.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
###############################################################################
#
# FreeAssociativeAlgebra.jl : free associative algebra R<x1,...,xn>
#
###############################################################################
###############################################################################
#
# Data type and parent object methods
#
###############################################################################
function parent_type(::Type{FreeAssociativeAlgebraElem{T}}) where T <: RingElement
return FreeAssociativeAlgebra{T}
end
function elem_type(::Type{FreeAssociativeAlgebra{T}}) where T <: RingElement
return FreeAssociativeAlgebraElem{T}
end
function parent(a::FreeAssociativeAlgebraElem)
return a.parent
end
base_ring_type(::Type{FreeAssociativeAlgebra{T}}) where T <: RingElement = parent_type(T)
base_ring(a::FreeAssociativeAlgebra{T}) where T <: RingElement = a.base_ring::parent_type(T)
function symbols(a::FreeAssociativeAlgebra)
return a.S
end
function number_of_variables(a::FreeAssociativeAlgebra)
return length(a.S)
end
function length(a::FreeAssociativeAlgebraElem)
return a.length
end
###############################################################################
#
# Basic manipulation
#
###############################################################################
function Base.deepcopy_internal(a::FreeAssociativeAlgebraElem{T}, dict::IdDict) where T <: RingElement
return FreeAssociativeAlgebraElem{T}(
a.parent,
deepcopy_internal(a.coeffs, dict),
deepcopy_internal(a.exps, dict),
a.length,
)
end
function zero(a::FreeAssociativeAlgebra{T}) where T
return FreeAssociativeAlgebraElem{T}(a, T[], Vector{Int}[], 0)
end
function one(a::FreeAssociativeAlgebra{T}) where T
c = one(base_ring(a))
!iszero(c) || return zero(a)
return FreeAssociativeAlgebraElem{T}(a, [c], [Int[]], 1)
end
function iszero(a::FreeAssociativeAlgebraElem{T}) where T
return length(a) == 0
end
function isone(a::FreeAssociativeAlgebraElem{T}) where T
if length(a) < 1
return isone(zero(base_ring(a)))
else
return a.length == 1 && isone(a.coeffs[1]) && isempty(a.exps[1])
end
end
function number_of_generators(a::FreeAssociativeAlgebra{T}) where T
return number_of_variables(a)
end
function gen(a::FreeAssociativeAlgebra{T}, i::Int) where T
@boundscheck 1 <= i <= ngens(a) || throw(ArgumentError("variable index out of range"))
c = one(base_ring(a))
iszero(c) && return zero(a)
return FreeAssociativeAlgebraElem{T}(a, T[c], [Int[i]], 1)
end
function gens(a::FreeAssociativeAlgebra{T}) where T <: RingElement
return [gen(a, i) for i in 1:ngens(a)]
end
function is_gen(a::FreeAssociativeAlgebraElem{T}) where T
if length(a) < 1
return iszero(one(base_ring(a)))
else
return a.length == 1 && isone(a.coeffs[1]) && length(a.exps[1]) == 1
end
end
function is_constant(a::FreeAssociativeAlgebraElem{T}) where T
return length(a) == 0 || (length(a) == 1 && isempty(a.exps[1]))
end
###############################################################################
#
# Promotion rules
#
###############################################################################
promote_rule(::Type{FreeAssociativeAlgebraElem{T}}, ::Type{FreeAssociativeAlgebraElem{T}}) where T <: RingElement =
FreeAssociativeAlgebraElem{T}
function promote_rule(
::Type{FreeAssociativeAlgebraElem{T}},
::Type{U},
) where {T <: RingElement, U <: RingElement}
promote_rule(T, U) == T ? FreeAssociativeAlgebraElem{T} : Union{}
end
###############################################################################
#
# Parent object call overload
#
###############################################################################
function (a::FreeAssociativeAlgebra{T})() where T
return zero(a)
end
function (a::FreeAssociativeAlgebra{T})(b::T) where T
iszero(b) && return zero(a)
return FreeAssociativeAlgebraElem{T}(a, T[b], [Int[]], 1)
end
function (a::FreeAssociativeAlgebra{T})(b::Integer) where T
iszero(b) && return zero(a)
R = base_ring(a)
return FreeAssociativeAlgebraElem{T}(a, T[R(b)], [Int[]], 1)
end
function (a::FreeAssociativeAlgebra{T})(b::FreeAssociativeAlgebraElem{T}) where T <: RingElement
parent(b) != a && error("Unable to coerce element")
return b
end
function (a::FreeAssociativeAlgebra{T})(c::Vector{T}, e::Vector{Vector{Int}}) where T
for ei in e
@boundscheck all(i -> (1 <= i <= nvars(a)), ei) ||
throw(ArgumentError("variable index out of range"))
end
n = length(c)
n == length(e) ||
error("coefficient array and exponent array should have the same length")
z = FreeAssociativeAlgebraElem{T}(a, copy(c), copy(e), n)
return combine_like_terms!(sort_terms!(z))
end
###############################################################################
#
# Coefficients, Terms, Etc.
#
###############################################################################
function coeff(a::FreeAssociativeAlgebraElem, i::Int)
@boundscheck 1 <= i <= length(a) || throw(ArgumentError("index out of range"))
return a.coeffs[i]
end
function term(a::FreeAssociativeAlgebraElem{T}, i::Int) where T <: RingElement
@boundscheck 1 <= i <= length(a) || throw(ArgumentError("index out of range"))
R = parent(a)
return FreeAssociativeAlgebraElem{T}(R, [a.coeffs[i]], [a.exps[i]], 1)
end
function monomial(a::FreeAssociativeAlgebraElem{T}, i::Int) where T <: RingElement
@boundscheck 1 <= i <= length(a) || throw(ArgumentError("index out of range"))
R = parent(a)
return FreeAssociativeAlgebraElem{T}(R, T[one(base_ring(R))], [a.exps[i]], 1)
end
@doc raw"""
exponent_word(a::FreeAssociativeAlgebraElem{T}, i::Int) where T <: RingElement
Return a vector of variable indices corresponding to the monomial of the
$i$-th term of $a$. Term numbering begins at $1$, and the variable
indices are given in the order of the variables for the ring.
"""
function exponent_word(a::FreeAssociativeAlgebraElem{T}, i::Int) where T <: RingElement
@boundscheck 1 <= i <= length(a) || throw(ArgumentError("index out of range"))
return a.exps[i]
end
function Base.iterate(a::FreeAssAlgExponentWords, state = 0)
state += 1
state <= length(a.poly) || return nothing
return exponent_word(a.poly, state), state
end
function leading_coefficient(a::FreeAssociativeAlgebraElem{T}) where T
return a.length > 0 ? coeff(a, 1) : zero(base_ring(a))
end
function leading_monomial(a::FreeAssociativeAlgebraElem{T}) where T
if length(a) < 1
throw(ArgumentError("Zero polynomial does not have a leading monomial"))
end
return monomial(a, 1)
end
function leading_term(a::FreeAssociativeAlgebraElem{T}) where T
if length(a) < 1
throw(ArgumentError("Zero polynomial does not have a leading term"))
end
return term(a, 1)
end
function leading_exponent_word(a::FreeAssociativeAlgebraElem{T}) where T
if length(a) < 1
throw(ArgumentError("Zero polynomial does not have a leading exponent word"))
end
return exponent_word(a, 1)
end
function total_degree(a::FreeAssociativeAlgebraElem{T}) where T
# currently stored in dexlex
return length(a) > 0 ? length(a.exps[1]) : -1
end
function Base.length(
x::FreeAssAlgExponentWords{T},
) where {S <: RingElement, T <: FreeAssociativeAlgebraElem{S}}
return length(x.poly)
end
function Base.eltype(
x::FreeAssAlgExponentWords{T},
) where {S <: RingElement, T <: FreeAssociativeAlgebraElem{S}}
return Vector{Int}
end
###############################################################################
#
# Canonicalisation
#
###############################################################################
function canonical_unit(a::FreeAssociativeAlgebraElem{T}) where T <: RingElement
return canonical_unit(leading_coefficient(a))
end
###############################################################################
#
# Unsafe functions
#
###############################################################################
function fit!(a::FreeAssociativeAlgebraElem{T}, n::Int) where T <: RingElement
if length(a.coeffs) < n
resize!(a.coeffs, n)
end
if length(a.exps) < n
resize!(a.exps, n)
end
return nothing
end
for T in [RingElem, Integer, Rational, AbstractFloat]
@eval begin
function setcoeff!(a::FreeAssociativeAlgebraElem{S}, i::Int, c::S) where S <: $T
fit!(a, i)
a.coeffs[i] = c
if i > length(a)
a.length = i
end
return a
end
end
end
function set_exponent_word!(
a::FreeAssociativeAlgebraElem{T},
i::Int,
w::Vector{Int},
) where T <: RingElement
n = nvars(parent(a))
@boundscheck all(x -> 1 <= x <= n, w) ||
throw(ArgumentError("variable index out of range"))
fit!(a, i)
a.exps[i] = w
if i > length(a)
a.length = i
end
return a
end
###############################################################################
#
# Comparison
#
###############################################################################
function ==(a::FreeAssociativeAlgebraElem{T}, b::FreeAssociativeAlgebraElem{T}) where T
fl = check_parent(a, b, false)
!fl && return false
return a.length == b.length &&
view(a.exps, 1:a.length) == view(b.exps, 1:b.length) &&
view(a.coeffs, 1:a.length) == view(b.coeffs, 1:b.length)
end
function word_cmp(a::Vector{Int}, b::Vector{Int})
if length(a) > length(b)
return +1
elseif length(a) < length(b)
return -1
else
# deglex
for i in 1:length(a)
if a[i] > b[i]
return -1
elseif a[i] < b[i]
return +1
end
end
return 0
end
end
function word_gt(a::Vector{Int}, b::Vector{Int})
return word_cmp(a, b) > 0
end
function sort_terms!(z::FreeAssociativeAlgebraElem{T}) where T
n = length(z)
if n > 1
p = sortperm(view(z.exps, 1:n), lt = word_gt)
z.coeffs = [z.coeffs[p[i]] for i in 1:n]
z.exps = [z.exps[p[i]] for i in 1:n]
end
return z
end
function combine_like_terms!(z::FreeAssociativeAlgebraElem{T}) where T
o = 0
i = 1
while i <= z.length
if o > 0 && word_cmp(z.exps[o], z.exps[i]) == 0
z.coeffs[o] += z.coeffs[i]
else
o += (o < 1 || !iszero(z.coeffs[o]))
z.exps[o] = z.exps[i]
z.coeffs[o] = z.coeffs[i]
end
i += 1
end
o += (o < 1 || !iszero(z.coeffs[o]))
z.length = o - 1
return z
end
@doc """
isless(p::FreeAssociativeAlgebraElem{T}, q::FreeAssociativeAlgebraElem{T}) where T
Implements the degree lexicographic ordering on terms, i.e.
first, the degrees of the largest monomials are compared, and if they
are the same, they are compared lexicographically and if they are still the same,
the coefficients are compared.
If everything is still the same, the next largest monomial is compared
and lastly the number of monomials is compared.
Since the coefficients are also compared, this only works when the
coefficient Ring implements isless.
The order of letters is the reverse of the order given when initialising the algebra.
# Examples
```jldoctest; setup = :(using AbstractAlgebra)
julia> R, (x, y) = free_associative_algebra(QQ, ["x", "y"]);
julia> x < y^2
true
julia> x^2 < x^2 + y
true
julia> y < x
true
julia> x^2 < 2*x^2
true
```
"""
function isless(p::FreeAssociativeAlgebraElem{T}, q::FreeAssociativeAlgebraElem{T}) where T
if p == q
return false
end
l = min(length(p.exps), length(q.exps))
sort_terms!(p)
sort_terms!(q)
for i in 1:l
c = word_cmp(q.exps[i], p.exps[i])
if c > 0
return true
elseif c < 0
return false
elseif p.coeffs[i] != q.coeffs[i]
return p.coeffs[i] < q.coeffs[i]
end
end
if length(p.exps) < length(q.exps)
return true
else
return false
end
end
###############################################################################
#
# Arithmetic
#
###############################################################################
function -(a::FreeAssociativeAlgebraElem{T}) where T <: RingElement
n = length(a)
R = parent(a)
zcoeffs = T[-a.coeffs[i] for i in 1:n]
return FreeAssociativeAlgebraElem{T}(R, zcoeffs, copy(a.exps), n)
end
function *(a::FreeAssociativeAlgebraElem{T}, b::FreeAssociativeAlgebraElem{T}) where T <: RingElement
zcoeffs = T[]
zexps = Vector{Int}[]
for i in 1:a.length, j in 1:b.length
push!(zcoeffs, a.coeffs[i] * b.coeffs[j])
push!(zexps, vcat(a.exps[i], b.exps[j]))
end
z = FreeAssociativeAlgebraElem{T}(parent(a), zcoeffs, zexps, length(zcoeffs))
return combine_like_terms!(sort_terms!(z))
end
function +(a::FreeAssociativeAlgebraElem{T}, b::FreeAssociativeAlgebraElem{T}) where T <: RingElement
zcoeffs = T[]
zexps = Vector{Int}[]
i = j = 1
while i <= a.length && j <= b.length
c = word_cmp(a.exps[i], b.exps[j])
if c < 0
push!(zcoeffs, b.coeffs[j])
push!(zexps, b.exps[j])
j += 1
elseif c > 0
push!(zcoeffs, a.coeffs[i])
push!(zexps, a.exps[i])
i += 1
else
s = a.coeffs[i] + b.coeffs[j]
if !iszero(s)
push!(zcoeffs, s)
push!(zexps, a.exps[i])
end
i += 1
j += 1
end
end
while i <= a.length
push!(zcoeffs, a.coeffs[i])
push!(zexps, a.exps[i])
i += 1
end
while j <= b.length
push!(zcoeffs, b.coeffs[j])
push!(zexps, b.exps[j])
j += 1
end
return FreeAssociativeAlgebraElem{T}(parent(a), zcoeffs, zexps, length(zcoeffs))
end
# a - b ignoring the first "start" terms of both
function _sub_rest(
a::FreeAssociativeAlgebraElem{T},
b::FreeAssociativeAlgebraElem{T},
start::Int,
) where T <: RingElement
zcoeffs = T[]
zexps = Vector{Int}[]
i = j = start + 1
while i <= a.length && j <= b.length
c = word_cmp(a.exps[i], b.exps[j])
if c < 0
push!(zcoeffs, -b.coeffs[j])
push!(zexps, b.exps[j])
j += 1
elseif c > 0
push!(zcoeffs, a.coeffs[i])
push!(zexps, a.exps[i])
i += 1
else
s = a.coeffs[i] - b.coeffs[j]
if !iszero(s)
push!(zcoeffs, s)
push!(zexps, a.exps[i])
end
i += 1
j += 1
end
end
while i <= a.length
push!(zcoeffs, a.coeffs[i])
push!(zexps, a.exps[i])
i += 1
end
while j <= b.length
push!(zcoeffs, -b.coeffs[j])
push!(zexps, b.exps[j])
j += 1
end
return FreeAssociativeAlgebraElem{T}(parent(a), zcoeffs, zexps, length(zcoeffs))
end
function -(a::FreeAssociativeAlgebraElem{T}, b::FreeAssociativeAlgebraElem{T}) where T <: RingElement
return _sub_rest(a, b, 0)
end
function ^(a::FreeAssociativeAlgebraElem{T}, b::Integer) where T <: RingElement
if b == 0
return one(parent(a))
elseif b == 1
return deepcopy(a)
elseif a.length == 1
if isempty(a.exps[1])
e = [Int[]]
else
b < 0 && throw(NotInvertibleError(a))
e = Vector{Int}[reduce(vcat, [a.exps[1] for i in 1:b])]
end
return FreeAssociativeAlgebraElem{T}(parent(a), [a.coeffs[1]^b], e, 1)
else
b < 0 && throw(NotInvertibleError(a))
return AbstractAlgebra.internal_power(a, b)
end
end
###############################################################################
#
# Division
#
###############################################################################
# return c*w*a*wp
function mul_term(c::T, w::Vector{Int}, a::FreeAssociativeAlgebraElem{T}, wp::Vector{Int}) where T
zcoeffs =
isone(c) ? T[a.coeffs[i] for i in 1:a.length] :
T[c * a.coeffs[i] for i in 1:a.length]
zexps = Vector{Int}[vcat(w, a.exps[i], wp) for i in 1:a.length]
return FreeAssociativeAlgebraElem{T}(parent(a), zcoeffs, zexps, a.length)
end
# return (true, l, r) with a = l*b*r and length(l) minimal
# or (false, junk, junk) if a is not two-sided divisible by b
function word_divides_leftmost(a::Vector{Int}, b::Vector{Int})
n = length(b)
for i in 0:length(a)-n
match = true
for j in 1:n
if b[j] != a[i+j]
match = false
break
end
end
if match
return (true, Int[a[k] for k in 1:i], Int[a[k] for k in 1+i+n:length(a)])
end
end
return (false, Int[], Int[])
end
# return (true, l, r) with a = l*b*r and length(r) minimal
# or (false, junk, junk) if a is not two-sided divisible by b
function word_divides_rightmost(a::Vector{Int}, b::Vector{Int})
n = length(b)
for i in length(a)-n:-1:0
match = true
for j in 1:n
if b[j] != a[i+j]
match = false
break
end
end
if match
return (true, Int[a[k] for k in 1:i], Int[a[k] for k in 1+i+n:length(a)])
end
end
return (false, Int[], Int[])
end
function AbstractAlgebra.divexact_left(
f::FreeAssociativeAlgebraElem{T},
g::FreeAssociativeAlgebraElem{T};
check::Bool = true,
) where T
R = parent(f)
qcoeffs = T[]
qexps = Vector{Int}[]
while length(f) > 0
ok, ml, mr = word_divides_leftmost(f.exps[1], g.exps[1])
ok && isempty(ml) || throw(ArgumentError("Not an exact division"))
qi = divexact(f.coeffs[1], g.coeffs[1])
push!(qcoeffs, qi)
push!(qexps, mr)
f = _sub_rest(f, mul_term(qi, ml, g, mr), 1) # enforce lt cancellation
end
return FreeAssociativeAlgebraElem{T}(R, qcoeffs, qexps, length(qcoeffs))
end
function AbstractAlgebra.divexact_right(
f::FreeAssociativeAlgebraElem{T},
g::FreeAssociativeAlgebraElem{T};
check::Bool = true,
) where T
R = parent(f)
qcoeffs = T[]
qexps = Vector{Int}[]
while length(f) > 0
ok, ml, mr = word_divides_rightmost(f.exps[1], g.exps[1])
ok && isempty(mr) || throw(ArgumentError("Not an exact division"))
qi = divexact(f.coeffs[1], g.coeffs[1])
push!(qcoeffs, qi)
push!(qexps, ml)
f = _sub_rest(f, mul_term(qi, ml, g, mr), 1) # enforce lt cancellation
end
return FreeAssociativeAlgebraElem{T}(R, qcoeffs, qexps, length(qcoeffs))
end
###############################################################################
#
# Ad hoc arithmetic functions
#
###############################################################################
function divexact(
a::FreeAssociativeAlgebraElem{T},
b::Integer;
check::Bool = true,
) where T <: RingElement
n = length(a)
R = parent(a)
b = base_ring(R)(b)
zcoeffs = T[divexact(a.coeffs[i], b, check = check) for i in 1:n]
return combine_like_terms!(FreeAssociativeAlgebraElem{T}(R, zcoeffs, copy(a.exps), n))
end
################################################################################
#
# Change base ring
#
################################################################################
function _change_freeassalg_ring(R, Rx, cached)
P, _ = AbstractAlgebra.free_associative_algebra(R, symbols(Rx); cached = cached)
return P
end
function change_base_ring(
R::Ring,
a::FreeAssociativeAlgebraElem{T};
cached::Bool = true,
parent::AbstractAlgebra.FreeAssociativeAlgebra = _change_freeassalg_ring(R, parent(a), cached),
) where T <: RingElement
base_ring(parent) != R && error("Base rings do not match.")
return _map(R, a, parent)
end
function map_coefficients(
f::S,
a::FreeAssociativeAlgebraElem{T};
cached::Bool = true,
parent::AbstractAlgebra.FreeAssociativeAlgebra = _change_freeassalg_ring(
parent(f(zero(base_ring(a)))),
parent(a),
cached,
),
) where {S, T <: RingElement}
return _map(f, a, parent)
end
function _map(g::S, a::FreeAssociativeAlgebraElem{T}, Rx) where {S, T <: RingElement}
cvzip = zip(coefficients(a), exponent_words(a))
M = MPolyBuildCtx(Rx)
for (c, v) in cvzip
push_term!(M, g(c), v)
end
return finish(M)
end
###############################################################################
#
# free_associative_algebra constructor
#
###############################################################################
function free_associative_algebra(
R::AbstractAlgebra.Ring,
s::Vector{Symbol};
cached::Bool = true,
)
parent_obj = FreeAssociativeAlgebra{elem_type(R)}(R, s, cached)
return (parent_obj, gens(parent_obj))
end