-
Notifications
You must be signed in to change notification settings - Fork 63
/
InvariantFactorDecomposition.jl
228 lines (199 loc) · 7.11 KB
/
InvariantFactorDecomposition.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
###############################################################################
#
# SNFModule.jl : Generic invariant factor decomposition of modules
#
###############################################################################
###############################################################################
#
# Basic manipulation
#
###############################################################################
parent_type(::Type{SNFModuleElem{T}}) where T <: RingElement = SNFModule{T}
elem_type(::Type{SNFModule{T}}) where T <: RingElement = SNFModuleElem{T}
parent(v::SNFModuleElem) = v.parent
base_ring(N::SNFModule{T}) where T <: RingElement = N.base_ring
base_ring(v::SNFModuleElem{T}) where T <: RingElement = base_ring(v.parent)
number_of_generators(N::SNFModule{T}) where T <: RingElement = length(N.invariant_factors)
gens(N::SNFModule{T}) where T <: RingElement = [gen(N, i) for i = 1:ngens(N)]
function gen(N::SNFModule{T}, i::Int) where T <: RingElement
@boundscheck 1 <= i <= ngens(N) || throw(ArgumentError("generator index out of range"))
R = base_ring(N)
return N([(j == i ? one(R) : zero(R)) for j = 1:ngens(N)])
end
invariant_factors(N::SNFModule{T}) where T <: RingElement = N.invariant_factors
function rels(N::SNFModule{T}) where T <: RingElement
T1 = dense_matrix_type(T)
R = base_ring(N)
invs = invariant_factors(N)
# count nonzero invariant factors
num = length(invs)
while num > 0
if !iszero(invs[num])
break
end
num -= 1
end
n = length(invs)
r = T1[matrix(R, 1, n, T[i == j ? invs[i] : zero(R) for j in 1:n]) for i in 1:num]
return r
end
###############################################################################
#
# String I/O
#
###############################################################################
function show(io::IO, N::SNFModule{T}) where T <: RingElement
print(io, "Invariant factor decomposed module over ")
print(IOContext(io, :compact => true), base_ring(N))
print(io, " with invariant factors ")
print(IOContext(io, :compact => true), invariant_factors(N))
end
function show(io::IO, N::SNFModule{T}) where T <: FieldElement
print(io, "Vector space over ")
print(IOContext(io, :compact => true), base_ring(N))
print(io, " with dimension ")
print(io, ngens(N))
end
function show(io::IO, v::SNFModuleElem)
print(io, "(")
len = ngens(parent(v))
for i = 1:len - 1
print(IOContext(io, :compact => true), v.v[1, i])
print(io, ", ")
end
if len > 0
print(IOContext(io, :compact => true), v.v[1, len])
end
print(io, ")")
end
###############################################################################
#
# Parent object call overload
#
###############################################################################
function reduce_mod_invariants(v::AbstractAlgebra.MatElem{T}, invars::Vector{T}) where T <: RingElement
v = deepcopy(v) # don't modify input
for i = 1:length(invars)
if !iszero(invars[i])
q, v[1, i] = divrem(v[1, i], invars[i])
end
end
return v
end
function (N::SNFModule{T})(v::Vector{T}) where T <: RingElement
length(v) != ngens(N) && error("Length of vector does not match number of generators")
mat = matrix(base_ring(N), 1, length(v), v)
mat = reduce_mod_invariants(mat, invariant_factors(N))
return SNFModuleElem{T}(N, mat)
end
function (M::SNFModule{T})(a::Vector{Any}) where T <: RingElement
length(a) != 0 && error("Incompatible element")
return M(T[])
end
function (N::SNFModule{T})(v::AbstractAlgebra.MatElem{T}) where T <: RingElement
ncols(v) != ngens(N) && error("Length of vector does not match number of generators")
nrows(v) != 1 && ("Not a vector in SNFModuleElem constructor")
v = reduce_mod_invariants(v, invariant_factors(N))
return SNFModuleElem{T}(N, v)
end
function (M::SNFModule{T})(a::SubmoduleElem{T}) where T <: RingElement
R = parent(a)
base_ring(R) != base_ring(M) && error("Incompatible modules")
return M(R.map(a))
end
function (M::SNFModule{T})(a::SNFModuleElem{T}) where T <: RingElement
R = parent(a)
R != M && error("Incompatible modules")
return a
end
# Fallback for all other kinds of modules
function (M::SNFModule{T})(a::AbstractAlgebra.FPModuleElem{T}) where T <: RingElement
error("Unable to coerce into given module")
end
###############################################################################
#
# SNFModule constructor
#
###############################################################################
@doc raw"""
snf(m::FPModule{T}) where T <: RingElement
Return a pair `M, f` consisting of the invariant factor decomposition $M$ of
the module `m` and a module homomorphism (isomorphisms) $f : M \to m$. The
module `M` is itself a module which can be manipulated as any other module
in the system.
"""
function snf(m::AbstractAlgebra.FPModule{T}) where T <: RingElement
R = base_ring(m)
old_rels = rels(m)
# put the relations into a matrix
r = length(old_rels)
s = ngens(m)
A = matrix(R, r, s, T[old_rels[i][1, j] for i in 1:r for j in 1:s])
# compute the snf
S, U, K = snf_with_transform(A)
# count unit invariant factors
nunits = 0
while nunits < min(nrows(S), ncols(S))
nunits += 1
if !is_unit(S[nunits, nunits])
nunits -= 1
break
end
end
num_gens = nrows(S) - nunits
# Make matrix for inverse isomorphism
mat_inv = matrix(R, nrows(K), ncols(A) - nunits,
T[K[i, j + nunits] for i in 1:nrows(K) for j in 1:ncols(A) - nunits])
# compute K^-1
K = inv(K)
# Make generators out of cols of matrix K
# throwing away ones corresponding to unit invariant factors
T2 = elem_type(m)
gens = Vector{T2}(undef, ncols(A) - nunits)
for i = 1:ncols(A) - nunits
gens[i] = m(matrix(R, 1, ncols(K),
T[K[i + nunits, j]
for j in 1:ncols(K)]))
end
# extract invariant factors from S
invariant_factors = T[S[i + nunits, i + nunits] for i in 1:num_gens]
for i = num_gens + 1:ncols(A) - nunits
push!(invariant_factors, zero(R))
end
# make matrix from gens
mat = matrix(R, ncols(A) - nunits, ncols(K),
T[gens[i].v[1, j] for i in 1:ncols(A) - nunits for j in 1:ncols(K)])
M = SNFModule{T}(m, gens, invariant_factors)
f = ModuleIsomorphism{T}(M, m, mat, mat_inv)
M.map = f
return M, f
end
function snf(m::SNFModule{T}) where T <: RingElement
return m
end
function invariant_factors(m::AbstractAlgebra.FPModule{T}) where T <: RingElement
R = base_ring(m)
old_rels = rels(m)
# put the relations into a matrix
r = length(old_rels)
s = ngens(m)
A = matrix(R, r, s, T[old_rels[i][1, j] for i in 1:r for j in 1:s])
# compute the snf
S = snf(A)
# count unit invariant factors
nunits = 0
while nunits < min(nrows(S), ncols(S))
nunits += 1
if !is_unit(S[nunits, nunits])
nunits -= 1
break
end
end
num_gens = nrows(S) - nunits
# extract invariant factors from S
invariant_factors = T[S[i + nunits, i + nunits] for i in 1:num_gens]
for i = num_gens + 1:ncols(A) - nunits
push!(invariant_factors, zero(R))
end
return invariant_factors
end