These instructions are for Ubuntu x86_64 (other linux would be similar with different command instead of apt-get).
-
First one needs a Python 3.10 environment. We recommend using Miniconda.
Download MiniConda for Linux. After downloading, run:
bash ./Miniconda3-py310_23.1.0-1-Linux-x86_64.sh # follow license agreement and add to bash if required
Enter new shell and should also see
(base)
in prompt. Then, create new env:conda create -n h2ogpt -y conda activate h2ogpt conda install python=3.10 -c conda-forge -y
You should see
(h2ogpt)
in shell prompt.Alternatively, on newer Ubuntu systems you can get Python 3.10 environment setup by doing:
sudo apt-get update sudo apt-get install -y build-essential gcc python3.10-dev virtualenv -p python3 h2ogpt source h2ogpt/bin/activate
-
Test your python:
python --version
should say 3.10.xx and:
python -c "import os, sys ; print('hello world')"
should print
hello world
. Then clone:git clone https://github.com/h2oai/h2ogpt.git cd h2ogpt
On some systems,
pip
still refers back to the system one, then one can usepython -m pip
orpip3
instead ofpip
or trypython3
instead ofpython
. -
For GPU: Install CUDA ToolKit with ability to compile using nvcc for some packages like llama-cpp-python, AutoGPTQ, exllama, flash attention, TTS use of deepspeed, by going to CUDA Toolkit. E.g. CUDA 11.8 Toolkit. In order to avoid removing the original CUDA toolkit/driver you have, on NVIDIA's website, use the
runfile (local)
installer, and choose to not install driver or overwrite/usr/local/cuda
link and just install the toolkit, and rely upon theCUDA_HOME
env to point to the desired CUDA version. Then do:export CUDA_HOME=/usr/local/cuda-11.8
Or if you do not plan to use packages like deepspeed in coqui's TTS or build other packages (i.e. only use binaries), you can just use the non-dev version from conda if preferred:
conda install cudatoolkit=11.8 -c conda-forge -y export CUDA_HOME=$CONDA_PREFIX
Do not install
cudatoolkit-dev
as it only goes up to cuda 11.7 that is no longer supported. -
Place the
CUDA_HOME
export into your~/.bashrc
or before starting h2oGPT for TTS's use of deepspeed to work. -
Prepare to install dependencies:
export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu118"
Choose cu118+ for A100/H100+. Or for CPU set
export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
-
Run (
bash docs/linux_install.sh
)[linux_install.sh] for full normal document Q/A installation. To allow all (GPL too) packages, run:GPLOK=1 bash docs/linux_install.sh
One can pick and choose different optional things to install instead by commenting them out in the shell script, or edit the script if any issues. See script for notes about installation.
See FAQ for many ways to run models. The below are some other examples.
Note models are stored in /home/$USER/.cache/
for chroma, huggingface, selenium, torch, weaviate, etc. directories.
-
Check that can see CUDA from Torch:
import torch print(torch.cuda.is_available())
should print True.
-
Place all documents in
user_path
or upload in UI (Help with UI).UI using GPU with at least 24GB with streaming:
python generate.py --base_model=h2oai/h2ogpt-4096-llama2-13b-chat --load_8bit=True --score_model=None --langchain_mode='UserData' --user_path=user_path
Same with a smaller model without quantization:
python generate.py --base_model=h2oai/h2ogpt-4096-llama2-7b-chat --score_model=None --langchain_mode='UserData' --user_path=user_path
UI using LLaMa.cpp LLaMa2 model:
python generate.py --base_model='llama' --prompt_type=llama2 --score_model=None --langchain_mode='UserData' --user_path=user_path --model_path_llama=https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q6_K.gguf --max_seq_len=4096
which works on CPU or GPU (assuming llama cpp python package compiled against CUDA or Metal).
If using OpenAI for the LLM is ok, but you want documents to be parsed and embedded locally, then do:
OPENAI_API_KEY=<key> python generate.py --inference_server=openai_chat --base_model=gpt-3.5-turbo --score_model=None
where
<key>
should be replaced by your OpenAI key that probably starts withsk-
. OpenAI is not recommended for private document question-answer, but it can be a good reference for testing purposes or when privacy is not required.
Perhaps you want better image caption performance and focus local GPU on that, then do:OPENAI_API_KEY=<key> python generate.py --inference_server=openai_chat --base_model=gpt-3.5-turbo --score_model=None --captions_model=Salesforce/blip2-flan-t5-xl
For Azure OpenAI:
OPENAI_API_KEY=<key> python generate.py --inference_server="openai_azure_chat:<deployment_name>:<base_url>:<api_version>" --base_model=gpt-3.5-turbo --h2ocolors=False --langchain_mode=UserData
where the entry
<deployment_name>
is required for Azure, others are optional and can be filled with stringNone
or have empty input between:
. Azure OpenAI is a bit safer for private access to Azure-based docs.Add
--share=True
to make gradio server visible via sharable URL.If you see an error about protobuf, try:
pip install protobuf==3.20.0
See CPU and GPU for some other general aspects about using h2oGPT on CPU or GPU, such as which models to try.
-
A Google Colab version of a 3B GPU model is at:
A local copy of that GPU Google Colab is h2oGPT_GPU.ipynb.
-
A Google Colab version of a 7B LLaMa CPU model is at:
A local copy of that CPU Google Colab is h2oGPT_CPU.ipynb.