forked from laser-ufpb/sac-dm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sacdm.py
255 lines (161 loc) · 4.43 KB
/
sacdm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Standard python numerical analysis imports:
import numpy as np
from scipy import signal
from scipy.interpolate import interp1d
from scipy.signal import butter, filtfilt, iirdesign, zpk2tf, freqz
from scipy.signal import find_peaks, peak_prominences
#import pandas as pd
#import peakutils
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
#import h5py
import sys
import time
from scipy.interpolate import spline
def get_data_from_wav(filename):
Fs, data = read(filename)
data = data[:,0]
return data, Fs
# Calcula SAC-DM medio total utilizando a funcao find_peaks do Python
def sac_dm_avg(data):
peaks, _ = find_peaks(data)
npeaks = 0.0 + len(peaks)
n = len(data)
return npeaks/n
# Calcula SAC-DM utilizando a funcao find_peaks do Python
def sac_dm(data, N):
M = len(data)
size = 1 + int(M)/N
sacdm=[0.0] * size
inicio = 0
fim = N
for k in range(size):
peaks, _ = find_peaks(data[inicio:fim])
v = np.array(peaks)
sacdm[k] = 1.0*len(v)/N
inicio = fim
fim = fim + N
return sacdm
# Calcula SAC-AM (amplitude media dos maximos) utilizando a funcao find_peaks do Python
def sac_am(data, N):
M = len(data)
size = 1 + int(M)/N
sacdm=[0.0] * size
inicio = 0
fim = N
for k in range(size):
peaks, _ = find_peaks(data[inicio:fim])
v = np.abs(data[peaks])
s = sum(v)
sacdm[k] = 1.0*s/N
inicio = fim
fim = fim + N
return sacdm
# Calcula SAC-DM utilizando a funcao find_peaks do Python
def sac_dm_slow(data, N):
peaks, _ = find_peaks(data)
M = len(data)
size = 1 + int(M)/N
sacdm=[0.0] * size
picos=[0.0] * size
inicio = 0
fim = N
v = np.array(peaks)
for k in range(size):
#sum(v<fim) retorna a quantidade de elementos em v menores que fim. Ou seja, a quantidade de True da clausula
sacdm[k] = sum(v<fim) - sum(v<inicio)
inicio = fim
fim = fim + N
return np.true_divide(sacdm,N),peaks
# Calcula SAC-PM a prominencia (altura) media dos picos utilizando a funcao peak_prominences do Python
def sac_pm(data):
peaks, _ = find_peaks(data)
return peaks
# Calcula SAC-AM a largura media dos picos utilizando a funcao peak_width do Python
def sac_wm(data):
peaks, _ = find_peaks(data)
return len(peaks)/len(data)
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
def sac_dm_old(data, N, threshold):
M = len(data)
#M = 50000
print "Numero de amostras: ", M
rho = 0.0
size = 1 + int(M)/N
sacdm=[0.0] * size
up = 0
peaks = 0
i = 0
n = N
j = 0
while i < M-2:
a = data[i]
b = data[i+1]
c = data[i+2]
if b > (a*(1+threshold)) and b > (c*(1+threshold)):
peaks = peaks + 1
if i == n:
rho = peaks/float(N)
if rho != 0:
sacdm[j] = rho
#sacdm[j]=1/(6*rho)
#print "peaks: ", peaks , " N: ", N, " rho: ", rho, "sacdm: ", sacdm[j]
else:
sacdm[j] = 0
j = j + 1
n = n + N
peaks = 0
i = i+1
#plot SAC-DM:
#print data
return sacdm
#********* Main ********
million = 1000*10000
x = np.random.randn(million)
start_time = time.time()
sac = sac_dm_old(x, 1000, 0.1)
end_time = time.time()
avg = np.average(sac)
print "SAC-DM Data (old): ", avg , end_time-start_time, "seconds"
start_time = time.time()
sac = sac_dm(x, 1000)
end_time = time.time()
avg = np.average(sac)
print "SAC-DM Data (slow2): ", avg , end_time-start_time, "seconds"
start_time = time.time()
sac = sac_am(x, 1000)
end_time = time.time()
avg = np.average(sac)
print "SAC-AM: ", avg , end_time-start_time, "seconds"
start_time = time.time()
sac2 = sac_dm_avg(x)
end_time = time.time()
print "SAC-DM: ", sac2, end_time-start_time, "seconds"
#plot(sac, peaks)
#print sac
#plt.plot(x)
#plt.plot(peaks, x[peaks], "x")
#plt.vlines(x=peaks, ymin=contour_heights, ymax=x[peaks])
#plt.show()
'''
N = int(sys.argv[2])
filename = sys.argv[1]
#data = np.genfromtxt(filename, delimiter=',', names=['x', 'y','z','s','t'])
#data = np.genfromtxt(filename, delimiter=';', names=['y', 'z','x'])
#data = np.genfromtxt(filename, delimiter=' ', names=['y'])
data = np.genfromtxt(filename, delimiter=',', names=['t', 'x','y','z'])
sac = sac_dm(data['z'], N, 0.1)
fig3 = plt.figure()
plt.ylabel('Number of requests')
plt.xlabel('Time (ms)')
ax3 = fig3.add_subplot(111)
ax3.set_title("SAC-DM")
ax3.plot(sac,color='r', label='MACCD2')
#ax3.plot(sac2,color='g', label='Outro')
ax3.legend(['y = MACCD2'], loc='upper left')
#ax3.legend(['y = MACCD2', 'y = Outro'], loc='upper left')
plt.show()
'''