-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosstem_inference_whole.py
284 lines (203 loc) · 12.2 KB
/
osstem_inference_whole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
from model.backbone_only import RIPointTransformer
import gen_utils as gu
from dataset.common import normal_redirect
import numpy as np
import pyvista as pv
import open3d as o3d
import pymeshlab
import os
import trimesh
palet = np.array([
[255,153,153],
[153,76,0],
[153,153,0],
[76,153,0],
[0,153,153],
[0,0,153],
[153,0,153],
[153,0,76],
[64,64,64],
[20, 10, 0],
[10, 10, 0],
[10, 20, 0],
[0, 10, 20],
[0, 0, 20],
[10, 0, 10],
[10, 0, 0],
[10, 10, 10],
])/255
Y_AXIS_MAX = 33.15232091532151
Y_AXIS_MIN = -36.9843781139949
view_point = np.array([0., 0., 0.])
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls/epoch61_val0.5790_cls_acc0.7587_mask_acc0.9796.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls/epoch90_val0.8209_cls_acc0.7884_mask_acc0.9821.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls/epoch81_val0.6884_cls_acc0.7924_mask_acc0.9819.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_sampled_saved/epoch98_val0.2551_cls_acc0.9070_mask_acc0.9914.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_sampled_focal_1/epoch86_val0.1673_cls_acc0.9108_mask_acc0.9921.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_simplification_focal/epoch83_val0.4873_cls_acc0.7289_mask_acc0.9834.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_simplified_normredir/epoch84_val0.5947_cls_acc0.7669_mask_acc0.9821.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_simplified_normredir/epoch99_val0.6429_cls_acc0.7617_mask_acc0.9834.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_simplified_normredir/epoch84_val0.5947_cls_acc0.7669_mask_acc0.9821.pth'
# checkpoint_path = 'checkpoints/lims_without_norm_5_encdec_multiscale_cls_mask+cls_simplified_normredir_focal/epoch83_val0.5781_cls_acc0.7416_mask_acc0.9783.pth'
# checkpoint_path = 'checkpoints_rollback/simplification_saved_maskhead_multiscale_vertexnorm/epoch83_val0.9012_cls_acc0.8159_mask_acc0.9616.pth'
# checkpoint_path = 'checkpoints_osstem/simplification_saved_maskhead_multiscale_vertexnorm_LRhead_focal/epoch86_val1.0023_cls_acc0.8355_mask_acc0.9400_LR_acc0.8767.pth'
# checkpoint_path = 'checkpoints_osstem/simplification_saved_maskhead_multiscale_vertexnorm_focal_normredir/epoch81_val0.6513_cls_acc0.8297_mask_acc0.9242_.pth'
checkpoint_path = 'checkpoints_osstem/simplification_saved_maskhead_multiscale_vertexnorm/epoch72_val0.7411_cls_acc0.8342_mask_acc0.9571_.pth'
# checkpoint_path = 'checkpoints_rollback/simplification_saved_maskhead_multiscale_vertexnorm_normredirect/epoch82_val0.7044_cls_acc0.8453_mask_acc0.9674_.pth'
base_dir = '../datasets/osttemorigin_annotated'
cases = sorted(os.listdir(base_dir))
# save_path = 'osstem_results_' + checkpoint_path.split('/')[1]
# save_path = 'osstem_aligned_results_' + checkpoint_path.split('/')[1]
save_path = 'osstem_results_aligned_' + checkpoint_path.split('/')[1]
if not os.path.exists(save_path):
os.mkdir(save_path)
## Upper/Lower 축 상태가 비슷한 케이스끼리 그룹으로 묶음
group1 = ['Case_01', 'Case_03', 'Case_04', 'Case_11', 'Case_13', 'Case_22', 'Case_23', 'Case_24', 'Case_25', 'Case_27', 'Case_37', 'Case_39', 'Case_40', 'Case_43', 'Case_46']
group2 = ['Case_02', 'Case_05', 'Case_06', 'Case_07', 'Case_08', 'Case_09', 'Case_10', 'Case_12', 'Case_14', 'Case_15', 'Case_16', 'Case_17', 'Case_18', 'Case_19', 'Case_20',
'Case_21', 'Case_26', 'Case_28', 'Case_29', 'Case_30', 'Case_31', 'Case_32', 'Case_33', 'Case_34', 'Case_35', 'Case_36', 'Case_38', 'Case_41', 'Case_42', 'Case_44', 'Case_45']
## gt_mat1 : group1 lower & group2 upper 에 대한 GT Matrix
## gt_mat2 : group2 lower & group1 upper 에 대한 GT Matrix
gt_mat1, gt_mat2 = np.array([[-1, 0, 0], [0, 0, -1], [0, -1, 0]]), np.array([[1, 0, 0], [0, 0, 1], [0, -1, 0]])
for case in cases:
for jaw in ['upper', 'lower']:
mesh_path, gt_path = os.path.join(base_dir, case, 'STL', case+'_'+jaw+'.obj'), os.path.join(base_dir, case, 'STL', case+'_'+jaw+'.txt')
vertices, org_mesh = gu.read_txt_obj_ls(mesh_path, ret_mesh=True, use_tri_mesh=True)
src_pcd = vertices[:, :6]
if ((case in group1) & (jaw=='lower')) | ((case in group2) & (jaw=='upper')):
gt_mat = gt_mat1
else:
gt_mat = gt_mat2
'''GT'''
with open(gt_path, 'r') as txt_file:
labels = txt_file.readlines()
if len(labels)==2:
teeth = list(map(int, labels[-1].split()))
else:
teeth = []
with open(mesh_path, 'r') as obj_file:
g, g_id = False, -1
group_dict, group = {}, set()
for line in obj_file:
### faces annotation read
if g and line.startswith('f'):
group.update(set(map(int, set(line[2:].replace('//', ' ').split()))))
# continue
###
### tooth number annotation read
elif g and line.startswith('#'):
g = False
group_dict[teeth[g_id]] = sorted(list(group))
group = set()
elif line.startswith('g') and line[9]!='0':
g = True
g_id+=1
###
if teeth != []:
group_dict[teeth[g_id]] = sorted(list(group))
del(group)
# print(group_dict.keys())
gt_labels = np.zeros(len(src_pcd))
# print("len :", len(gt_labels))
for d in group_dict.keys():
gt_labels[np.array(group_dict[d])-1] = int(d)
if 'lower' in mesh_path:
gt_labels -= 20
gt_labels[gt_labels//10==1] %= 10
gt_labels[gt_labels//10==2] = (gt_labels[gt_labels//10==2]%10) + 8
gt_labels[gt_labels<0] = 0
''''''
'''Previous Sampling'''
# if src_pcd.shape[0] > 24000:
# src_pcd = gu.resample_pcd([src_pcd], 24000, "fps")[0]
"""Sampling #0 - Poisson Disk Sampling"""
# pcd = org_mesh.sample_points_poisson_disk(24000)
# # o3d.visualization.draw_geometries([pcd])
# vertices = np.array(pcd.points)
# normals = np.array(pcd.normals)
# src_pcd = np.concatenate([vertices, normals], 1)
# """"""
"""Sampling #1 - Point Cloud Simplification"""
label_colors = np.zeros(vertices[:, :3].shape)
for idx, p in enumerate(palet):
label_colors[gt_labels==idx] = palet[idx]
label_colors = np.concatenate([label_colors, np.ones((label_colors.shape[0], 1))], axis=-1)
meshlab_mesh = pymeshlab.Mesh(vertex_matrix = vertices[:, :3],
v_normals_matrix = vertices[:, 3:6],
v_color_matrix = label_colors)
colored_mesh_set = pymeshlab.MeshSet()
colored_mesh_set.add_mesh(meshlab_mesh)
colored_mesh_set.generate_simplified_point_cloud(radius=pymeshlab.Percentage(0.3), exactnumflag=True)
sampled_label = np.zeros(colored_mesh_set[1].vertex_color_matrix().shape[0])
for i, p in enumerate(palet):
sampled_label[((np.isclose(colored_mesh_set[1].vertex_color_matrix()[:,:3], p)).sum(-1)//3).astype(np.bool_)] = i
labeled_vertices = np.concatenate([colored_mesh_set[1].vertex_matrix(), colored_mesh_set[1].vertex_normal_matrix(),
np.expand_dims(sampled_label, axis=-1).astype(np.int64)], axis=1)
""""""
"""GT Check"""
gt_labels = labeled_vertices[:, -1:]
mask_labels = np.copy(gt_labels)
mask_labels[mask_labels>0] = 1
# gu.print_3d(gu.get_colored_mesh(org_mesh, gt_labels.reshape(-1)))
"""OK"""
'''Remeshing'''
cloud = pv.PolyData(labeled_vertices[:,:3])
mesh = cloud.delaunay_2d()
points = np.array(mesh.points) - np.mean(mesh.points, axis=0)
points = np.matmul(points, gt_mat)
org_mesh.vertices = o3d.utility.Vector3dVector(points)
org_mesh.triangles = o3d.utility.Vector3iVector(np.array(mesh.regular_faces))
org_mesh.compute_vertex_normals()
''''''
labeled_vertices[:, :3] -= np.mean(labeled_vertices[:, :3], axis=0)
labeled_vertices[:, :3] = ((labeled_vertices[:, :3]-Y_AXIS_MIN)/(Y_AXIS_MAX - Y_AXIS_MIN))*2-1
src_pcd = labeled_vertices[:, :3]
src_normals = labeled_vertices[:, 3:6]
# src_normals = normal_redirect(src_pcd[:,:3], src_normals, view_point=view_point)
src_pcd, src_normals, src_feats, src_raw_pcd = torch.tensor(src_pcd)[:, :3].cuda().type(torch.float32).contiguous(), \
torch.tensor(src_normals).cuda().type(torch.float32).contiguous(), \
torch.ones(size=(src_pcd.shape[0], 1)).cuda().type(torch.float32).contiguous(), \
torch.tensor(src_pcd)[:, :3].cuda().type(torch.float32).contiguous()
src_o = torch.tensor([src_raw_pcd.shape[0]]).to(src_raw_pcd).int().contiguous()
model = RIPointTransformer(transformer_architecture=['self', 'cross', 'self', 'cross', 'self', 'cross'], with_cross_pos_embed=True, factor=1)
model.cuda()
model.load_state_dict(torch.load(checkpoint_path)['model_state_dict'])
model.eval()
cls_output, mask_output, sem_output = model([src_raw_pcd, src_feats, src_o, src_normals])
cls_output = cls_output.argmax(-1)
mask_output = mask_output.argmax(-1)
mask_labels = mask_labels.reshape(-1)
gt_labels = gt_labels.reshape(-1)
lr_labels = lr_labels.reshape(-1)
# print("Mask acc : {:.4f}".format((mask_output==torch.tensor(mask_labels, device='cuda')).sum() / mask_output.shape[0]))
# print("Class acc : {:.4f}".format((cls_output==torch.tensor(gt_labels, device='cuda')).sum() / cls_output.shape[0]))
### 치아-잇몸 바이너리 클래스 예측에 대한 결과 가시화
mask_pred_colored_mesh = gu.get_colored_mesh(org_mesh, mask_output.detach().cpu().numpy())
# # print("Mask acc : {:.4f}".format((mask_output==torch.tensor(mask_labels, device='cuda')).sum() / mask_output.shape[0]))
# mask_points = o3d.geometry.PointCloud()
# mask_points.points = mask_pred_colored_mesh.vertices
# mask_points.normals = mask_pred_colored_mesh.vertex_normals
# mask_points.colors = mask_pred_colored_mesh.vertex_colors
# o3d.visualization.draw_geometries([mask_points])
# gu.print_3d(mask_pred_colored_mesh)
###
### 정합을 위해 tooth crown 부분만 (.obj) 파일로 저장했던 코드
tri_mask_mesh = trimesh.Trimesh(vertices=mask_pred_colored_mesh.vertices, faces=mask_pred_colored_mesh.triangles)
tri_mask_mesh.export(os.path.join(save_path, case+'_'+jaw+'.obj'))
###
### 치아 전체 클래스 예측에 대한 결과 가시화
# cls_pred_colored_mesh = gu.get_colored_mesh(org_mesh, cls_output.detach().cpu().numpy())
# # # print("Class acc : {:.4f}".format((cls_output==torch.tensor(gt_labels, device='cuda')).sum() / cls_output.shape[0]))
# # cls_points = o3d.geometry.PointCloud()
# # cls_points.points = cls_pred_colored_mesh.vertices
# # cls_points.normals = cls_pred_colored_mesh.vertex_normals
# # cls_points.colors = cls_pred_colored_mesh.vertex_colors
# # o3d.visualization.draw_geometries([cls_points])
# gu.print_3d(cls_pred_colored_mesh)
###
### mesh to point clouds
# pcl = o3d.geometry.PointCloud()
# pcl.points = cls_pred_colored_mesh.vertices
# pcl.colors = cls_pred_colored_mesh.vertex_colors
# o3d.visualization.draw_geometries([pcl])
###