|
| 1 | +""" |
| 2 | +Project Euler Problem 203: https://projecteuler.net/problem=203 |
| 3 | +
|
| 4 | +The binomial coefficients (n k) can be arranged in triangular form, Pascal's |
| 5 | +triangle, like this: |
| 6 | + 1 |
| 7 | + 1 1 |
| 8 | + 1 2 1 |
| 9 | + 1 3 3 1 |
| 10 | + 1 4 6 4 1 |
| 11 | + 1 5 10 10 5 1 |
| 12 | + 1 6 15 20 15 6 1 |
| 13 | +1 7 21 35 35 21 7 1 |
| 14 | + ......... |
| 15 | +
|
| 16 | +It can be seen that the first eight rows of Pascal's triangle contain twelve |
| 17 | +distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35. |
| 18 | +
|
| 19 | +A positive integer n is called squarefree if no square of a prime divides n. |
| 20 | +Of the twelve distinct numbers in the first eight rows of Pascal's triangle, |
| 21 | +all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers |
| 22 | +in the first eight rows is 105. |
| 23 | +
|
| 24 | +Find the sum of the distinct squarefree numbers in the first 51 rows of |
| 25 | +Pascal's triangle. |
| 26 | +
|
| 27 | +References: |
| 28 | +- https://en.wikipedia.org/wiki/Pascal%27s_triangle |
| 29 | +""" |
| 30 | + |
| 31 | +import math |
| 32 | +from typing import List, Set |
| 33 | + |
| 34 | + |
| 35 | +def get_pascal_triangle_unique_coefficients(depth: int) -> Set[int]: |
| 36 | + """ |
| 37 | + Returns the unique coefficients of a Pascal's triangle of depth "depth". |
| 38 | +
|
| 39 | + The coefficients of this triangle are symmetric. A further improvement to this |
| 40 | + method could be to calculate the coefficients once per level. Nonetheless, |
| 41 | + the current implementation is fast enough for the original problem. |
| 42 | +
|
| 43 | + >>> get_pascal_triangle_unique_coefficients(1) |
| 44 | + {1} |
| 45 | + >>> get_pascal_triangle_unique_coefficients(2) |
| 46 | + {1} |
| 47 | + >>> get_pascal_triangle_unique_coefficients(3) |
| 48 | + {1, 2} |
| 49 | + >>> get_pascal_triangle_unique_coefficients(8) |
| 50 | + {1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21} |
| 51 | + """ |
| 52 | + coefficients = {1} |
| 53 | + previous_coefficients = [1] |
| 54 | + for step in range(2, depth + 1): |
| 55 | + coefficients_begins_one = previous_coefficients + [0] |
| 56 | + coefficients_ends_one = [0] + previous_coefficients |
| 57 | + previous_coefficients = [] |
| 58 | + for x, y in zip(coefficients_begins_one, coefficients_ends_one): |
| 59 | + coefficients.add(x + y) |
| 60 | + previous_coefficients.append(x + y) |
| 61 | + return coefficients |
| 62 | + |
| 63 | + |
| 64 | +def get_primes_squared(max_number: int) -> List[int]: |
| 65 | + """ |
| 66 | + Calculates all primes between 2 and round(sqrt(max_number)) and returns |
| 67 | + them squared up. |
| 68 | +
|
| 69 | + >>> get_primes_squared(2) |
| 70 | + [] |
| 71 | + >>> get_primes_squared(4) |
| 72 | + [4] |
| 73 | + >>> get_primes_squared(10) |
| 74 | + [4, 9] |
| 75 | + >>> get_primes_squared(100) |
| 76 | + [4, 9, 25, 49] |
| 77 | + """ |
| 78 | + max_prime = round(math.sqrt(max_number)) |
| 79 | + non_primes = set() |
| 80 | + primes = [] |
| 81 | + for num in range(2, max_prime + 1): |
| 82 | + if num in non_primes: |
| 83 | + continue |
| 84 | + |
| 85 | + counter = 2 |
| 86 | + while num * counter <= max_prime: |
| 87 | + non_primes.add(num * counter) |
| 88 | + counter += 1 |
| 89 | + |
| 90 | + primes.append(num ** 2) |
| 91 | + return primes |
| 92 | + |
| 93 | + |
| 94 | +def get_squared_primes_to_use( |
| 95 | + num_to_look: int, squared_primes: List[int], previous_index: int |
| 96 | +) -> int: |
| 97 | + """ |
| 98 | + Returns an int indicating the last index on which squares of primes |
| 99 | + in primes are lower than num_to_look. |
| 100 | +
|
| 101 | + This method supposes that squared_primes is sorted in ascending order and that |
| 102 | + each num_to_look is provided in ascending order as well. Under these |
| 103 | + assumptions, it needs a previous_index parameter that tells what was |
| 104 | + the index returned by the method for the previous num_to_look. |
| 105 | +
|
| 106 | + If all the elements in squared_primes are greater than num_to_look, then the |
| 107 | + method returns -1. |
| 108 | +
|
| 109 | + >>> get_squared_primes_to_use(1, [4, 9, 16, 25], 0) |
| 110 | + -1 |
| 111 | + >>> get_squared_primes_to_use(4, [4, 9, 16, 25], 0) |
| 112 | + 1 |
| 113 | + >>> get_squared_primes_to_use(16, [4, 9, 16, 25], 1) |
| 114 | + 3 |
| 115 | + """ |
| 116 | + idx = max(previous_index, 0) |
| 117 | + |
| 118 | + while idx < len(squared_primes) and squared_primes[idx] <= num_to_look: |
| 119 | + idx += 1 |
| 120 | + |
| 121 | + if idx == 0 and squared_primes[idx] > num_to_look: |
| 122 | + return -1 |
| 123 | + |
| 124 | + if idx == len(squared_primes) and squared_primes[-1] > num_to_look: |
| 125 | + return -1 |
| 126 | + |
| 127 | + return idx |
| 128 | + |
| 129 | + |
| 130 | +def get_squarefree( |
| 131 | + unique_coefficients: Set[int], squared_primes: List[int] |
| 132 | +) -> Set[int]: |
| 133 | + """ |
| 134 | + Calculates the squarefree numbers inside unique_coefficients given a |
| 135 | + list of square of primes. |
| 136 | +
|
| 137 | + Based on the definition of a non-squarefree number, then any non-squarefree |
| 138 | + n can be decomposed as n = p*p*r, where p is positive prime number and r |
| 139 | + is a positive integer. |
| 140 | +
|
| 141 | + Under the previous formula, any coefficient that is lower than p*p is |
| 142 | + squarefree as r cannot be negative. On the contrary, if any r exists such |
| 143 | + that n = p*p*r, then the number is non-squarefree. |
| 144 | +
|
| 145 | + >>> get_squarefree({1}, []) |
| 146 | + set() |
| 147 | + >>> get_squarefree({1, 2}, []) |
| 148 | + set() |
| 149 | + >>> get_squarefree({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}, [4, 9, 25]) |
| 150 | + {1, 2, 3, 5, 6, 7, 35, 10, 15, 21} |
| 151 | + """ |
| 152 | + |
| 153 | + if len(squared_primes) == 0: |
| 154 | + return set() |
| 155 | + |
| 156 | + non_squarefrees = set() |
| 157 | + prime_squared_idx = 0 |
| 158 | + for num in sorted(unique_coefficients): |
| 159 | + prime_squared_idx = get_squared_primes_to_use( |
| 160 | + num, squared_primes, prime_squared_idx |
| 161 | + ) |
| 162 | + if prime_squared_idx == -1: |
| 163 | + continue |
| 164 | + if any(num % prime == 0 for prime in squared_primes[:prime_squared_idx]): |
| 165 | + non_squarefrees.add(num) |
| 166 | + |
| 167 | + return unique_coefficients.difference(non_squarefrees) |
| 168 | + |
| 169 | + |
| 170 | +def solution(n: int = 51) -> int: |
| 171 | + """ |
| 172 | + Returns the sum of squarefrees for a given Pascal's Triangle of depth n. |
| 173 | +
|
| 174 | + >>> solution(1) |
| 175 | + 0 |
| 176 | + >>> solution(8) |
| 177 | + 105 |
| 178 | + >>> solution(9) |
| 179 | + 175 |
| 180 | + """ |
| 181 | + unique_coefficients = get_pascal_triangle_unique_coefficients(n) |
| 182 | + primes = get_primes_squared(max(unique_coefficients)) |
| 183 | + squarefrees = get_squarefree(unique_coefficients, primes) |
| 184 | + return sum(squarefrees) |
| 185 | + |
| 186 | + |
| 187 | +if __name__ == "__main__": |
| 188 | + print(f"{solution() = }") |
0 commit comments