-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetectAndAlignFaces
39 lines (33 loc) · 1.3 KB
/
detectAndAlignFaces
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import dlib
import os
import openface
import ntpath
from glob import glob
# load face recognition model
predictor_model = './models/shape_predictor_68_face_landmarks.dat'
# initiate face detection and alignment
face_detector = dlib.get_frontal_face_detector()
face_pose_predictor = dlib.shape_predictor(predictor_model)
face_aligner = openface.AlignDlib(predictor_model)
# locate training directories
dbDir = './face-db/images/'
persons = [x for x in next(os.walk(dbDir))[1]]
## DETECT AND ALIGN LANDMARKS
for person in persons:
print('----------------')
print person
print('----------------')
files = glob(dbDir + person + '/*.jpg')
for file in files:
image = cv2.imread(file)
detected_faces = face_detector(image, 1)
print ntpath.basename(file)
if len(detected_faces) != 1:
print("None or various faces detected. Ignoring file.")
continue
else:
print("Found {} faces in the image file".format(len(detected_faces)))
pose_landmarks = face_pose_predictor(image, detected_faces[0])
alignedFace = face_aligner.align(534, image, detected_faces[0], landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
cv2.imwrite('./face-db/alignedImages/' + person + '/' + ntpath.basename(file),alignedFace)